1. 题目来源
链接:312. 戳气球
- 类似题:
- 区间dp 模板
题单:
- 八、区间 DP
- §8.2 其他区间 DP
2. 题目解析
很经典的区间 dp 问题,也算是套路问题了。
思路:
- 状态定义:
- f[i][j] 定义为将 [i+1, j-1] 区间区间的气球全部打完所获得的最大得分。
- 这样处理是为了打最后一个气球的时候,保证其左右两侧都有气球,相当于哨兵节点。即一个区间段,保证左右端点值不被打掉。
- 这个是常用技巧,需注意。 1547. 切棍子的最小成本 也会用到。
- 状态转移:
- 打气球位置可为 i+1,i+2,…,j-2,j-1
- 那么记最后一次打气球位置为 k,则有 f[i][j]=max(f[i][j], f[i][k]+f[k][j]+a[i]*a[k]*a[j])
- 从上述状态转移方程也能看出来哈,期间的 [i+1,k-1],[k+1,j-1] 气球都被打了,仅 i,k,j 气球没打,即两个端点配合中间的气球凑成区间。这个状态定义的好处就是,方便我们进行状态转移。
- 时间复杂度: O ( n 3 ) O(n^3) O(n3)
- 空间复杂度: O ( n 2 ) O(n^2) O(n2)
class Solution {
public:
int maxCoins(vector<int>& nums) {
int n = nums.size();
vector<int> a(n + 2, 1); // 添加两个哨兵位置
for (int i = 1; i <= n; i ++ ) a[i] = nums[i - 1]; // 重新赋值
vector<vector<int>> f(n + 2, vector<int>(n + 2));
// 枚举区间长度,在这个状态定义下,真是的区间长度1,实际上为区间长度3
// 因为枚举的实际上是 状态[i,j] 实际求得是[i+1,j-1] 这个区间的值。那么区间最短为 3
// 长度为 1,不存在。
// 长度为 2,真实区间长度为 0,结果为 0,不需要枚举。
// 长度为 3,真实区间长度为 1,需要枚举。
for (int len = 3; len <= n + 2; len ++ ) {
for (int i = 0; i + len - 1 <= n + 1; i ++ ) { // 枚举区间起点 i。i+len-1 即为终点 j
int j = i + len - 1;
for (int k = i + 1; k < j; k ++ ) { // 枚举中间点 k,k 在 [i+1, j-1] 之间
f[i][j] = max(f[i][j], f[i][k] + f[k][j] + a[i] * a[j] * a[k]);
}
}
}
return f[0][n + 1];
}
};