[H区间dp] lc312. 戳气球(状态定义+边界处理+技巧题+好题+难题)

1. 题目来源

链接:312. 戳气球

题单:

  • 八、区间 DP
    • §8.2 其他区间 DP

2. 题目解析

很经典的区间 dp 问题,也算是套路问题了。

思路:

  • 状态定义
    • f[i][j] 定义为将 [i+1, j-1] 区间区间的气球全部打完所获得的最大得分。
    • 这样处理是为了打最后一个气球的时候,保证其左右两侧都有气球,相当于哨兵节点。即一个区间段,保证左右端点值不被打掉。
    • 这个是常用技巧,需注意。 1547. 切棍子的最小成本 也会用到。
  • 状态转移
    • 打气球位置可为 i+1,i+2,…,j-2,j-1
    • 那么记最后一次打气球位置为 k,则有 f[i][j]=max(f[i][j], f[i][k]+f[k][j]+a[i]*a[k]*a[j])
    • 从上述状态转移方程也能看出来哈,期间的 [i+1,k-1],[k+1,j-1] 气球都被打了,仅 i,k,j 气球没打,即两个端点配合中间的气球凑成区间。这个状态定义的好处就是,方便我们进行状态转移。

  • 时间复杂度 O ( n 3 ) O(n^3) O(n3)
  • 空间复杂度 O ( n 2 ) O(n^2) O(n2)

class Solution {
public:
    int maxCoins(vector<int>& nums) {
        int n = nums.size();
        vector<int> a(n + 2, 1);  // 添加两个哨兵位置
        for (int i = 1; i <= n; i ++ ) a[i] = nums[i - 1]; // 重新赋值
        vector<vector<int>> f(n + 2, vector<int>(n + 2)); 

        // 枚举区间长度,在这个状态定义下,真是的区间长度1,实际上为区间长度3
        // 因为枚举的实际上是 状态[i,j] 实际求得是[i+1,j-1] 这个区间的值。那么区间最短为 3
        // 长度为 1,不存在。
        // 长度为 2,真实区间长度为 0,结果为 0,不需要枚举。
        // 长度为 3,真实区间长度为 1,需要枚举。
        for (int len = 3; len <= n + 2; len ++ ) { 
            for (int i = 0; i + len - 1 <= n + 1; i ++ ) { // 枚举区间起点 i。i+len-1 即为终点 j
                int j = i + len - 1;
                for (int k = i + 1; k < j; k ++ ) { // 枚举中间点 k,k 在 [i+1, j-1] 之间
                    f[i][j] = max(f[i][j], f[i][k] + f[k][j] + a[i] * a[j] * a[k]);
                }
            }
        }

        return f[0][n + 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值