【中等】力扣算法题解析LeetCode382:链表随机节点

关注文末推广名片,即可免费获得本题测试源码

题目来源:LeetCode 382. 链表随机节点

问题抽象: 设计一个支持 单链表随机节点等概率抽取 的数据结构,给定链表的头节点(链表非空),要求实现以下核心操作:

  1. 功能定义

    • 构造函数 Solution(ListNode head):初始化数据结构;
    • getRandom()等概率随机返回 链表中的一个节点(每个节点被选中的概率为 1/NN 为链表长度)。
  2. 操作约束

    • getRandom 时间复杂度 O(N)N 为链表长度,需遍历链表),空间复杂度 O(1)(仅常数空间);
    • 禁止预先存储链表节点数组(空间复杂度 O(N) 不可接受);
    • 需通过 蓄水池抽样算法(Reservoir Sampling)实现:
      • 遍历链表,对第 i 个节点(i≥1)以概率 1/i 替换当前选中节点;
      • 遍历结束时,当前选中节点即为随机结果。
  3. 概率要求

    • 对长度为 N 的链表,每个节点被返回的概率严格等于 1/N(数学证明:
      • k 个节点被选中概率 = (1/k) × (k/(k+1)) × ... × ((N-1)/N) = 1/N);
    • 多次调用 getRandom 的结果相互独立(无状态依赖)。
  4. 边界处理

    • 链表长度 N=1 时,getRandom 恒返回头节点;
    • 长链表验证:
      • 对节点值 [1,2,3],调用 1000getRandom,每个节点出现频率接近 333 次;
    • 特殊链表:
      • 含重复值链表(如 [1,1,2])→ 节点值可重复,但每个节点实例概率独立(如两个 1 节点各占 1/3 概率)。

输入:构造函数:链表头节点 head(节点数 ≥1);getRandom():无参数。
输出getRandom() 返回随机节点值(整数)。


解题思路

本题需要在未知长度的单链表中实现随机节点抽取,且保证每个节点被选中的概率相等。最优解法是使用水塘抽样算法(Reservoir Sampling),特别适用于数据流或长度未知的场景。算法核心思想如下:

  1. 遍历过程概率更新

    • 遍历链表时,对第 i 个节点(从1开始计数)
    • 1/i 的概率选择当前节点替换结果
    • (i-1)/i 的概率保留之前的结果
  2. 概率均等证明

    • 第1个节点:选中概率 = 1/1 = 1
    • 第2个节点:选中概率 = 1/2,第1节点保留概率 = 1 × (1 - 1/2) = 1/2
    • 第3个节点:选中概率 = 1/3,前节点保留概率 = 1/2 × (1 - 1/3) = 1/3
    • 最终每个节点概率均为 1/n(n为链表长度)

优势空间复杂度 O(1):仅使用常数空间;无需预处理:适合动态链表;完全随机:严格保证概率均等;多次调用独立:每次调用重新抽样。


代码实现(Java版)🔥点击下载源码

class Solution {
    private ListNode head;  // 链表头节点
    private Random rand;    // 随机数生成器

    public Solution(ListNode head) {
        this.head = head;
        this.rand = new Random();
    }
    
    public int getRandom() {
        ListNode cur = head;   // 当前遍历节点
        int res = 0;           // 存储结果
        int count = 0;         // 节点计数器
        
        while (cur != null) {
            count++;
            // 生成[0, count)的随机整数,若为0则更新结果(概率1/count)
            if (rand.nextInt(count) == 0) {
                res = cur.val;
            }
            cur = cur.next;    // 移动到下一节点
        }
        return res;
    }
}

代码说明

  1. 核心逻辑

    • getRandom() 每次调用遍历整个链表
    • 对第 i 个节点:用 rand.nextInt(i) == 0 判断是否选中(概率 1/i
    • 遍历结束后返回最终选中的节点值
  2. 变量作用

    • count:记录当前遍历的节点序号(从1开始)
    • res:动态存储当前选中的节点值
    • cur:链表遍历指针
  3. 算法特性

    • 时间复杂度:每次调用 O(n)
    • 空间复杂度:O(1)(仅用常数空间)
    • 完全随机性:n个节点每个被选中概率严格为 1/n
    • 数据流友好:无需提前知道链表长度

提交详情(执行用时、内存消耗)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

达文汐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值