torch.sum(image, axis=0)中axis含义及用法

默认情况下,调用求和函数会沿所有的轴降低张量的维度,使它变为一个标量。 可以指定张量沿哪一个轴来通过求和降低维度。
以矩阵为例,通过求所有行元素的和来降维(轴0),即将相同列位置对应的所有行位置元素相加,列数保持不变,可以在调用函数时指定axis=0。

axis=1,是通过求所有列元素的和来降维(轴1),即将相同行位置对应的所有列位置元素相加,行数保持不变。

import torch
T = torch.tensor([[1,2,3],[4,5,6],[7,8,9]])
print("axis = 0:  ",torch.sum(T,axis = 0))
print("axis = 1:  ", torch.sum(T,axis = 1))

输出:
axis = 0:   tensor([12, 15, 18])
axis = 1:   tensor([ 6, 15, 24])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值