31、MongoDB性能监控与优化指南

MongoDB性能监控与优化指南

1. 内存监控基础

1.1 内存类型

内存主要分为虚拟内存、映射内存和常驻内存。当数据完全能存入内存时,常驻内存大小应近似于数据大小,这里的“内存”指的是RAM。随着数据集增长,虚拟内存和映射内存会相应增加,常驻内存会增长到可用RAM大小后保持稳定。

1.2 页面错误跟踪

页面错误统计能反映MongoDB查找的数据不在RAM中的频率。通过观察页面错误数量随时间的变化图(如图21 - 2和图21 - 3),可了解系统状况。若磁盘能处理大量错误且应用能承受磁盘查找延迟,高页面错误数不一定有问题;但如果应用无法承受从磁盘读取数据的延迟增加,就需将所有数据存入内存或使用SSD。
磁盘过载时页面错误会成问题,磁盘负载能力并非线性,过载后操作排队时间会变长,导致性能迅速下降。因此,应跟踪页面错误数量,确定系统能承受的页面错误基线,当错误数上升且性能变差时发出警报。
可通过以下命令查看每个数据库的页面错误统计:

> db.adminCommand({"serverStatus" : 1})["recordStats"]
{
    "accessesNotInMemory": 200632,
    "test": {
        "accessesNotInMemory": 1,
        "pageFaultExceptionsThrown": 0
    },
    "pageFaultExceptionsThrown": 6633,
    "admin": {
        "accessesN
内容概要:本文详细探讨了基于阻尼连续可调减振器(CDC)的半主动悬架系统的控制策略。首先建立了CDC减振器的动力学模型,验证了其阻尼特性,并通过实验确认了模型的准确性。接着,搭建了1/4车辆悬架模型,分析了不同阻尼系数对悬架性能的影响。随后,引入了PID、自适应模糊PID和模糊-PID并联三种控制策略,通过仿真比较它们的性能提升效果。研究表明,模糊-PID并联控制能最优地提升悬架综合性能,在平顺性和稳定性间取得最佳平衡。此外,还深入分析了CDC减振器的特性,优化了控制策略,并进行了系统级验证。 适用人群:从事汽车工程、机械工程及相关领域的研究人员和技术人员,尤其是对车辆悬架系统和控制策略感兴趣的读者。 使用场景及目标:①适用于研究和开发基于CDC减振器的半主动悬架系统的工程师;②帮助理解不同控制策略(如PID、模糊PID、模糊-PID并联)在悬架系统中的应用及其性能差异;③为优化车辆行驶舒适性和稳定性提供理论依据和技术支持。 其他说明:本文不仅提供了详细的数学模型和仿真代码,还通过实验数据验证了模型的准确性。对于希望深入了解CDC减振器工作原理及其控制策略的读者来说,本文是一份极具价值的参考资料。同时,文中还介绍了多种控制策略的具体实现方法及其优缺点,为后续的研究和实际应用提供了有益的借鉴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值