23、椭圆曲线密码系统与智能卡加密应用解析

椭圆曲线密码系统与智能卡加密应用解析

1. 椭圆曲线密码系统基础

椭圆曲线可用于定义一个群,记为 E(K),其元素包含椭圆曲线上的所有点以及 0。在该群中,加法运算定义为:过两个点作直线(若两点相同,则直线为曲线的切线),此直线与曲线必有第三个交点,该交点关于 x 轴的对称点即为两点相加的结果,其中 0 的对称点仍是 0,且对于椭圆曲线上的任意点 P,都有 P + 0 = 0 + P = P。求一个点的逆元时,过该点作平行于 y 轴的直线,若此直线为切线,则该点自身就是逆元;若不是切线,则直线与曲线的另一个交点就是逆元。

在密码学中,主要使用 E(GF(m)) 形式的椭圆曲线,即 E(GF(p)) 和 E(GF(2n))。

1.1 椭圆曲线密码系统原理

对于群 E(GF(m)),由于历史原因其运算被称为加法,但乘法运算也是可行的,因此多次点相加可表示为指数函数,其逆运算则可表示为对数。E(GF(m)) 有一个重要特性:存在有效的指数函数计算算法,但对数计算却缺乏有效算法。这使得基于离散对数的所有密码算法都能借助 E(GF(m)) 实现。椭圆曲线密码系统(ECC)就是一种基于离散对数的非对称算法,它用 E(GF(m)) 中的计算替代了 GF(p) 中的计算。在 ECC 中,指定了群 GF(m) 以及由其构建的群 E(GF(m)) ,指数的参数为自然数,指数函数的底数是 E(GF(m)) 的元素。

1.2 为何使用 ECC

  • 计算效率 :E(GF(m)) 中两点相加涉及 GF(m) 中的多次计算。虽然 GF(m) 中的幂运算比 E(GF(m)) 中的幂运算轻松,但已知
标题SpringBoot基层智能化人员调度系统研究AI更换标题第1章引言介绍SpringBoot基层智能化人员调度系统的研究背景、意义、现状以及论文的研究方法和创新点。1.1研究背景意义分析当前基层人员调度的现状和问题,阐述智能化调度的必要性和意义。1.2国内外研究现状概述国内外在基层智能化人员调度系统方面的研究进展和应用情况。1.3论文方法及创新点介绍本文采用的研究方法和实现智能化人员调度系统的创新点。第2章相关理论阐述SpringBoot框架、智能化调度算法和人员调度理论。2.1SpringBoot框架概述介绍SpringBoot框架的特点、优势和应用场景。2.2智能化调度算法总结现有的智能化调度算法,并分析其优缺点。2.3人员调度理论基础阐述人员调度的基本概念、原则和方法。第3章系统需求分析对SpringBoot基层智能化人员调度系统进行需求分析,包括功能性需求和非功能性需求。3.1功能性需求明确系统需要实现的功能,如人员信息管理、任务分配、调度策略制定等。3.2非功能性需求分析系统的性能、安全性、可靠性等非功能性需求。3.3需求优先级划分根据实际需求,对各项需求进行优先级划分。第4章系统设计详细介绍SpringBoot基层智能化人员调度系统的设计方案,包括架构设计、数据库设计和界面设计。4.1架构设计给出系统的整体架构,包括前后端分离、微服务架构等设计理念。4.2数据库设计设计合理的数据库表结构,满足系统的数据存储和查询需求。4.3界面设计设计简洁、易用的用户界面,提升用户体验。第5章系统实现阐述SpringBoot基层智能化人员调度系统的具体实现过程,包括核心代码实现、功能模块实现等。5.1核心代码实现详细介绍系统核心功能的代码实现,如人员信息管理、任务分配算法等。5.2功能模块实现分别介绍各个功能模块的实现过程,如用户登录、人员信息管理、任务管理等。第6章系统
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值