pyspark 代码练习7 —— 分层抽样

本文通过实例详细介绍了如何使用PySpark进行分层抽样,内容包括理解分层抽样的概念,设置抽样比例,以及具体在PySpark代码中的实现步骤,帮助读者掌握大数据环境下进行分层抽样的技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

seed = 10
sampleby = 'colA'
fraction=0.8
franctions = df.select(sampleby).distinct().withColumn('fraction', lit(fraction)).rdd.collec
### PySpark代码语法示例及说明 以下是PySpark的一些基本代码语法及其解释: #### 初始化SparkSession 在PySpark中,`SparkSession` 是入口点,用于创建DataFrame并执行SQL查询。 ```python from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("Example") \ .getOrCreate() ``` 上述代码通过 `SparkSession.builder` 创建了一个名为 "Example" 的会话对象[^1]。此对象可以用来加载数据、运行查询以及保存结果。 #### 加载CSV文件到DataFrame 可以通过读取本地或HDFS上的CSV文件来创建DataFrame。 ```python df = spark.read.csv("path/to/file.csv", header=True, inferSchema=True) ``` 这段代码将指定路径下的 CSV 文件加载为 DataFrame,并自动推断列名和数据类型[^2]。 #### 显示DataFrame的内容 显示前几行数据以便快速查看内容。 ```python df.show(5) # 显示前五行 ``` 该命令能够帮助开发者验证数据是否被正确加载[^3]。 #### 使用SQL语句查询数据 可以在注册临时表之后使用标准SQL进行复杂的数据处理。 ```python df.createOrReplaceTempView("table_name") result_df = spark.sql("SELECT * FROM table_name WHERE column_name > value") ``` 这里展示了如何利用 SQL 查询过滤特定条件下的记录。 #### 自定义函数 (UDF) 当内置函数无法满足需求时,可定义自己的逻辑作为用户自定义函数(User Defined Functions)。 ```python from pyspark.sql.functions import udf from pyspark.sql.types import StringType def custom_function(input_value): return f"Processed {input_value}" udf_custom_function = udf(custom_function, StringType()) df_with_udf = df.withColumn("processed_column", udf_custom_function(df["column_name"])) ``` 上面的例子演示了怎样创建一个简单的字符串加工型 UDF 并将其应用至现有的一列上。 #### 转换RDD为DataFrame 如果已经有一个 RDD,则可通过结构化方式转换成 DataFrames 来享受更高效的计算性能。 ```python rdd = sc.parallelize([(1, "Alice"), (2, "Bob")]) columns = ["id", "name"] df_from_rdd = rdd.toDF(columns) ``` 这是把原始的键值对形式转化为带有命名字段的新表格表示法的一个例子。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值