23年12月来自美国Notre Dame大学的综述论文“User Modeling in the Era of Large Language Models: Current Research and Future Directions“。
**用户建模(UM)**旨在从用户数据中发现模式或学习有关特定用户特征的表示,如profile、偏好和个性。用户模型能够在推荐、教育和医疗保健等许多在线应用程序中实现个性化和可疑检测。两种常见的用户数据类型是文本和图,因为这些数据通常包含大量用户生成内容(UGC)和在线交互。在过去的二十年里,文本和图挖掘的研究发展迅速,为许多显著的解决方案做出了贡献。最近,大语言模型(LLM)在生成、理解甚至推理文本数据方面表现出了优越的性能。用户建模的方法已经配备LLM,并且很快变得非常出色。
本文总结关于LLM如何以及为什么是建模和理解UGC的好工具等现有研究。回顾了几类用于用户建模的大语言模型(LLM-UM)方法,这些方法以不同的方式将LLM与基于文本和图的方法集成在一起。然后介绍用于各种UM应用程序的特定LLM-UM技术。最后,提出了LLM-UM研究的挑战和未来方向。
如图所示:用户建模旨在从用户数据中发现知识和模式,识别profile、偏好和个性。图中的三个蓝色箭头对应于三个主要贡献:(1)总结LLM如何以及为什么是建模和理解UGC的好工具,(2)回顾将LLM与基于文本和图UM方法集成的方法,以及(3)介绍用于各种应用的LLM-UM技术。
用户建模(UM)涉及从用户数据中提取或预测洞察力,如profile、个性特征、行为模式和偏好。这些见解可用于定制和优化面向用户的系统或服务,使其能够有效适应个人用户的独特需求[124]。从用户数据的角度来看,系统主要有两种类型:用户生成内容(UGC)和用户-用户/条目交互。这些数据模态包括文本内容和基于图的交互。用户建模技术可以大致分为两类:基于文本的方法和基于图的方法,每种分别侧重于UGC和用户交互图。