1. 部署deepseek

deepseek有多种部署方式,下面介绍 使用 api + 服务器 来进行部署。服务器有多种,我们首先来介绍deepseek服务器

目的

学习deepseek的部署,一般的目的就是,我们有自己的应用,并且使自己的应用有deepseek的能力

deepseek服务器

  1. 首先我们去github去看下deepseek的包 https://github.com/deepseek-ai ,这里我们可以看到deepseek的几种模型
  2. 进入deepseek的官网 ,在官网上有个API开放平台的按钮在这里插入图片描述
  3. 点击进入开放平台,注册并登录,并点击创建API key在这里插入图片描述,创建成功的页面如下,并复制这API key在这里插入图片描述4. 创建好apikey之后,我们就可以调用deepseek
### 使用 Docker Desktop 在本地环境中部署 DeepSeek 应用 #### 准备工作 确保 Windows 系统已配置好 WSL 2 并安装 Ubuntu 22.04.5 版本。这一步骤对于后续操作至关重要,因为 DeepSeek部署依赖于稳定的 Linux 子系统环境[^2]。 #### 安装并启动 Docker Desktop 前往 Docker 官网下载最新版本的 Docker Desktop:[Docker官网](https://www.docker.com/products/docker-desktop),下载完成后,双击 `Docker Desktop Installer.exe` 启动安装向导。在配置安装选项时,建议勾选 "Use the WSL 2 based engine" 来启用基于 WSL 2 的引擎支持;如果有需求运行 Windows 容器,则可以选择性地勾选 "Enable Windows Containers"[^1]。完成上述设置后点击“Install”,等待安装过程结束,并按照提示重启计算机以激活新安装的服务。 #### 设置 Docker Desktop 和 WSL 整合 重新开机之后打开 Docker Desktop,在 settings->resources->WSL Integration 中找到之前创建好的 Ubuntu 发行版名称前打钩,以便让两者之间建立良好连接关系。 #### 部署 DeepSeek 所需资源准备 为了能够顺利构建和训练模型,还需要准备好 NVIDIA 显卡驱动及相关工具链的支持。具体来说就是通过官方渠道获取适用于当前系统的 CUDA Toolkit 及 cuDNN SDK ,同时也要记得安装 nvidia-docker 工具集来简化 GPU 加速容器镜像的操作流程。 #### 构建与运行 DeepSeek WebUI 现在可以在终端里执行如下命令拉取最新的 deepseek-webui 镜像文件: ```bash docker pull deepseekai/webui:latest ``` 接着定义一个名为 `deepseek_webui` 的服务实例: ```bash docker run -d \ --name=deepseek_webui \ -p 7860:7860 \ --gpus all \ deepseekai/webui:latest ``` 这段脚本的作用在于以后台模式启动指定端口映射(-p参数)以及分配全部可用GPU设备(--gpu参数),从而使得外部访问者可以通过浏览器直接浏览到位于 http://localhost:7860 上的应用界面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值