在企业场景中,AI智能体的应用落地案例正日益增多。本文将从企业业务场景的选择入手,带你依次完成最小可行性产品(MVP)的构建、AI智能体应用质量与安全性的测试,以及生产环境中的部署运维等环节,全方位呈现基于LangChain分6步构建AI智能体应用的全过程。
接下来,我们将对此展开详细分析。
今年,不少公司都在探讨AI智能体的构建。企业不难设想AI智能体对自身现有业务的改变,但许多团队却不清楚该从何处着手、如何推进以及怎样设定期望。
本指南将为你呈现从想法到实际落地的完整过程:并以电子邮件AI智能体的真实构建案例为例进行说明。
1、步骤一:明确 AI 智能体的功能与性能
1.1、落地设计
首先要在企业内部挑选一些实际的业务场景,确定哪些任务借助 AI 智能体能够完成得更出色。
所选任务应是聪明的实习生经过指导就能胜任的。要是最优秀的实习生即便有充足的时间和资源也难以完成,那这个任务可能不切实际,或者说目标过于宏大。在启用专家模式之前,得先证明自己能掌握基础知识。
首先,构思 5-10 个具体的企业任务场景。这样做有两个目的:
一是验证你的想法是否界定得当,既不过于琐碎,也不过于模糊;二是为日后评估性能提供基准。
1.2、案例实施:构建电子邮件 AI 智能体
在这一步,我们会明确 AI 智能体需要处理的任务,可能包含:
-
优先处理关键利益相关者发来的紧急邮件;
-
依据日历的空闲时间安排会议;
-
过滤掉垃圾邮件或无需回复的邮件;
-
参考公司文档回答产品相关问题;
需要规避的情况:
-
若无法提出具体的业务场景,说明你的范围可能过于宽泛;
-
对于逻辑简单固定、且其他公司已用传统软件实现的场景,AI 智能体未必比传统软件更优。因为 AI 智能体有时反应较慢、成本较高,处理起来也有难度。要是传统软件能出色完成任务,就没必要再用 AI 智能体;
-
不要期望不存在的奇迹(例如:连接到尚未存在或无法构建的 API 或数据集)。
2、步骤二:为 AI 智能体设计工作流程(Workflow)
2.1、落地设计
为AI 智能体制定详细的标准操作程序(SOP),其中要包含人类执行任务或流程的分步说明。
这一步有助于确认你所选的业务场景范围明确且合理,还能揭示 AI 智能体可能需要处理的关键步骤、决策以及所需工具,为 AI 智能体应用的编排构建奠定基础。
2.2、案例实施:构建电子邮件 AI 智能体
对于我们的电子邮件 AI 智能体,其分步工作流程或许如下:
-
分析电子邮件内容和发件人背景,对响应优先级进行分类;
-
查看日历空闲情况,安排视频会议;
-
结合电子邮件、发件人及日程安排背景,起草回复内容;
-
经过人工快速审核并批准后发送邮件。
将工作流程写出来,有助于确保任务范围适宜,并弄清楚 AI 智能体需要处理的工具和逻辑。
3、步骤三:利用提示词打造 MVP
3.1、落地设计
选好起点很关键。如果 AI 智能体较为复杂,试图一次性完成所有工作就过于雄心勃勃了。首先,依据 SOP 对 AI 智能体进行架构设计,明确其运行流程、需要做出的决策以及所需的 LLM 推理环节。
然后,聚焦最关键的 LLM 推理任务(如分类、决策),通过创建提示词来构建 MVP。多数 AI 智能体失败的原因是 LLM 无法充分完成推理任务。先手动输入数据让提示词发挥作用,这能帮助你在构建完整 AI 智能体之前建立信心。像 LangSmith 这类提示词工程工具,能从管理提示词版本、跨场景或数据集测试,到跟踪迭代过程中的性能等方面提供帮助,简化这一过程。
保持简洁:
-
先手动输入提示词所需的任何数据或上下文(暂不考虑自动化);
-
根据步骤一中列出的例子进行测试,验证常见用例的性能;
-
专注于确保 LLM 推理准确无误。
3.2、案例实施:构建电子邮件 AI 智能体
在这个阶段,我们首先要识别并确定一项高价值的推理任务。
对于电子邮件 AI 智能体而言,或许可以只专注于根据紧急程度和意图对邮件进行分类(如会议请求、支持问题),因为这是智能体其他功能正常运行的基础步骤。
先编写一个核心提示词,专门用于此项任务,并手动输入如下内容:
-
电子邮件内容:“我们下周能否开会讨论 LangChain 的产品路线图?”
-
发件人:“杰夫・贝佐斯”,头衔:“亚马逊 CEO”
-
输出:意图 = “会议请求”,紧急程度 = “高” 。
一旦大模型在测试用例的推理中能始终保持准确,你就可以确信核心逻辑是可靠的,也就有了坚实的构建基础。
4、步骤四:AI 智能体的构建与编排
4.1、落地设计
既然已有可用的提示词,接下来就该将其与真实数据和用户输入相连接了。
首先确定提示词需要哪些上下文或数据,例如电子邮件内容、日历空闲情况和产品文档等,并规划如何通过编程方式获取(如借助 API、数据库或文件系统)。
然后,编写编排逻辑,将正确的数据接入提示词。在简单情况下,可能只是直接传递输入;对于更复杂的工作流程,可能需要 AI 智能体业务逻辑层来决定查询哪些数据源、何时调用这些数据源,以及在将结果输入 LLM 之前如何组合它们的输出。
4.2、案例实施:构建电子邮件 AI 智能体
对于我们的电子邮件 AI 智能体,这一步可能需要与 Gmail API(读取收到的邮件)、Google Calendar API(查看空闲时间)以及 CRM 或联系人数据库(丰富发件人背景信息)进行集成。
之后我们会构建如下编排逻辑:
-
新邮件触发 AI 智能体启动;
-
AI 智能体通过 MCP 网关层从 CRM 或通过网络搜索获取发件人信息;
-
将完整的上下文传入提示词,以确定邮件的紧急程度以及是否需要回复;
-
若适合安排会议,就查看日历空闲情况并给出建议时间;
-
AI 智能体起草回复内容;
-
经人工审核后发送邮件。
5、步骤五:AI 智能体的测试与迭代
5.1、落地设计
首先,使用步骤一中定义的例子手动测试 MVP。目标是验证 AI 智能体能否为核心用例生成合理且准确的输出。如果系统涉及多个 LLM 调用或步骤,使用 LangSmith 等工具进行跟踪,以可视化流程并调试每个阶段的决策过程,会很有帮助。
手动测试稳定后,扩展到自动化测试,以确保一致性并捕捉边缘情况。团队通常会将例子增加到几十个,以便更好地了解 AI 智能体的优势和劣势。这也有助于在增加更多复杂性之前量化性能:
-
通过 AI 智能体以编程方式运行所有例子(包括原始例子和新增例子);
-
定义自动化成功指标:这能迫使你明确 AI 智能体的预期行为;
-
有选择地进行人工审查,以发现指标可能遗漏的问题;
5.2、案例实施:构建电子邮件 AI 智能体
对于电子邮件 AI 智能体,我们希望在几个关键领域定义并测试其成功与否:
-
语气和安全性:回复内容应专业、尊重,且不包含虚构或不当信息;
-
意图和优先级检测:能根据发件人和邮件内容正确对邮件进行分类和排序;
-
工具使用效率:AI 智能体应只触发必要的工具(例如,若无需安排会议,就避免检查日历);
-
草稿质量:建议的回复应根据输入上下文做到清晰、相关且准确。
6、步骤六:AI 智能体的部署、扩展与完善
6.1、落地设计
一旦 MVP 能稳定运行,就可以开始扩展其范围了,比如添加新功能、涵盖更广泛的场景,甚至构建多 AI 智能体工作流程。对于每一项新功能或集成,都要重复步骤五中的测试过程,确保不会影响现有功能。
准备就绪后,将其部署到生产环境供用户使用。LangGraph 平台支持一键部署,能快速发布、扩展和管理 AI 智能体。
观察用户实际使用 AI 智能体的情况。像 LangSmith 这样的工具,能让你实时跟踪 AI 智能体的操作,便于发现成本激增、准确性问题或延迟等情况。实际使用情况往往与初始假设存在差异,这些洞察能揭示不足、发现意外需求,并指导你确定下一次迭代的优先级。
关键是要将部署到生产环境视为迭代的开始,而非开发的结束。
6.2、案例实施:构建电子邮件 AI 智能体
部署电子邮件 AI 智能体后,通过监控流量和常见用例,我们可能会发现一些未被覆盖的场景。
这些新出现的模式意味着有扩大范围的机会。我们可以逐步添加新功能,更新提示词和编排逻辑,并且在进一步扩展之前,始终通过测试和用户反馈来验证每一项新增功能。
7、总结
这个过程旨在帮助你构建基于明确用例、经过真实例子测试并由真实世界反馈塑造的 AI 智能体。这不仅仅是让 AI 智能体运行,而是构建有用、可靠并与人们实际工作方式一致的 AI 智能体。
无论你是自动化电子邮件分类还是编排复杂工作流程,这六个步骤都提供了从想法到落地的实际路径。但工作在部署后并没有停止:最好的 AI 智能体是通过迭代构建形成的。
所以,从小处开始,始终保持以用户需求为中心的态度,并不断改进和完善。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!