【深度收藏】RAG系统8大核心环节拆解:让大语言模型不再“一本正经地胡说八道“

常听人说:“最好的学习时机是昨天,若错过,此刻便是最佳选择。” 正值清明小长假首日,窗外春风轻柔地拂过枝头,暖融融的阳光铺满了每一个角落,想必大家早已按捺不住想要放松的心绪。不过,在享受悠闲时光的同时,不如抽点时间和我一起聊聊当下热门的RAG技术?如果你已经对RAG原理有了深入了解,也欢迎帮我检验一下,看看我所讲的内容是否与你的理解相符。

最近这段时间,coze、dify这类低代码平台不断优化RAG功能,让这项技术变得越来越“接地气”,普通用户也能轻松上手操作。但要想真正“玩转”RAG,仅仅会用平台工具可不够,搞懂它背后的运作流程才是关键——我们要做RAG的“掌控者”,而非单纯的文档搬运工。今天,我就用最通俗易懂的方式,一步步拆解RAG系统,带你搞清楚它究竟是如何让大语言模型(LLM)变得更“聪明”、更懂用户需求的。

请添加图片描述

一、RAG系统:让智能问答更“懂你”的关键

到底什么是RAG系统?简单来讲,它就像一位专业且高效的“知识管家”:一方面,它能在海量的外部资料中精准筛选出你需要的核心信息;另一方面,它还能借助大语言模型的“语言加工能力”,把这些零散的信息整理成条理清晰、自然流畅的回答。

RAG最迷人的地方,就在于“检索+生成”的双重优势。有了这两个能力的配合,智能问答不再是冷冰冰的机器式回复,而是能贴合用户需求、充满“温度”的对话。接下来,我们就一起打开RAG的“技术手册”,看看它是如何一步步完成“从找信息到出答案”这个过程的。

在这里插入图片描述

二、拆解RAG系统:8个核心环节带你看懂运作逻辑

其实,RAG系统的核心逻辑就是“先检索、后生成”的组合模式。它先从庞大的外部知识库中挖掘出有价值的信息,再利用大语言模型的语言表达能力,将这些信息转化为用户能轻松理解的回答。打个比方,它就像一位既学识渊博又擅长沟通的朋友:既能快速找到你需要的知识,又能用你习惯的方式把内容讲明白。

下面,我们就逐个拆解RAG系统的工作流程,看看每个环节是如何衔接、共同完成智能问答的。

1. 文本分块:给“海量知识”做“切割”

在这里插入图片描述

假设你手头上有一本上千页的专业书籍,里面装满了有用的知识,但每次想找某个知识点,都得从头翻到尾,不仅浪费时间,还容易错过关键内容。RAG系统的第一步,就是解决这个问题——把“厚书”拆成“薄页”,也就是进行“文本分块”,将大段的文档分割成一个个短小、精炼的文本片段。

在这里插入图片描述

为什么一定要做文本分块?主要有三个关键原因:

  • 降低处理难度:如果直接把几百页的文档丢给系统,不仅会占用大量计算资源,还可能导致系统处理速度变慢,甚至出现卡顿;
  • 适配模型限制:和人有“阅读上限”一样,嵌入模型每次能处理的文字数量也是有限的,超过这个范围,模型就无法精准理解文本含义;
  • 提升检索精度:如果把整本书当作一个“整体标签”,检索时很难定位到具体知识点;而分块后,每个片段都对应一个细分主题,能更快找到目标内容。

所以说,文本分块就像是给知识做“精细化切片”,为后续的每一步操作打下扎实基础。

2. 生成嵌入:给每个“知识切片”贴“数字标签”

在这里插入图片描述

文本分块完成后,接下来要做的就是给每个文本片段“做标记”——生成“嵌入向量”。这可不是简单的文字标签,而是一串由数字组成的“密码”,能精准代表文本的核心含义。生成这个“密码”的工具,就是嵌入模型,它能把文字里的语义、逻辑转化为机器能读懂的数字形式。

举个生活中的例子,这就像给每一页笔记盖一个独一无二的“指纹章”:通过这个“指纹”,我们不用逐字阅读,也能快速判断这页笔记讲的是哪个领域的内容。后续系统要找相关信息时,只要对比这些“数字指纹”,就能快速匹配到目标文本块。

3. 向量数据库存储:打造RAG的“知识仓库”

在这里插入图片描述

有了这些“数字指纹”,总不能随手乱放——这时候就需要“向量数据库”登场了。你可以把它理解成RAG系统的专属“知识仓库”,里面不仅存着每个文本块的“数字指纹”,还保留了文本的原始内容、来源、更新时间等关键信息。

这个“仓库”可不只是个“储物柜”,它还有两个重要能力:一是支持“动态更新”,后续有新的资料加入,能快速完成存储和标签生成;二是具备“快速检索”功能,当用户提问时,它能在几秒内从海量数据中找出相关的“知识片段”。有了这个仓库,RAG系统才有了“记忆能力”,不会每次回答问题都“从零开始”。

4. 用户输入查询:开启问答的“第一步”

在这里插入图片描述

做完了前期的“知识储备”,就轮到用户“发号施令”了。当用户在界面上输入问题,比如“RAG系统怎么实现精准检索?”“用RAG做问答需要哪些工具?”,就正式触发了RAG系统的查询流程——这也是整个问答环节的“起点”。

值得注意的是,用户的提问可能五花八门:有的很简洁(如“RAG是什么?”),有的很复杂(如“相比传统问答模型,RAG在处理实时数据时有哪些优势?”),但无论哪种形式,系统都会先接收问题,再进入下一步处理。

5. 查询向量化:给问题也盖“数字指纹”

在这里插入图片描述

要在“知识仓库”里找答案,首先得让问题和仓库里的“知识片段”“说同一种语言”。所以,系统会用和生成文本嵌入时相同的嵌入模型,把用户的问题也转化成一串“数字指纹”——也就是“查询嵌入向量”。

这一步的关键在于“统一标准”:只有问题和文本块的“指纹格式”一致,后续的相似度对比才有意义。比如,用户问“如何优化RAG的检索速度?”,转化成数字向量后,才能和仓库里“RAG检索优化方法”相关的文本块向量进行精准匹配。

6. 检索相似块:从“仓库”里挑“相关知识”

在这里插入图片描述

有了问题的“数字指纹”,系统就会带着它去向量数据库里“寻宝”——找出和问题最相似的文本块。

在这里插入图片描述

具体怎么找呢?系统会提前设定一个数量K(比如K=5、K=10),然后通过“近似最近邻搜索”算法,从数据库中筛选出K个与查询向量相似度最高的文本块。这些文本块就像是“候选答案库”,里面大概率包含了回答用户问题所需的关键信息。

为什么用“近似最近邻搜索”?因为如果数据库里有几十万、几百万个文本块,逐一分对比会非常耗时;而这种算法能在保证精度的前提下,大幅提升检索速度,让用户不用长时间等待。

7. 结果重排序(可选):给“候选答案”排“优先级”

在这里插入图片描述

筛选出K个相似文本块后,有些RAG系统还会多做一步——“结果重排序”。这就像从一堆候选答案里,再挑出最贴合问题的几个,进一步提升回答的精准度。

通常,系统会用“交叉编码器”这类更精准的模型,对每个候选文本块和问题的“语义匹配度”进行打分:得分越高,说明文本块和问题的关联越紧密。最后按照得分从高到低排序,把最相关的文本块留给下一步使用。

不过,这一步并不是所有RAG系统都必备的:如果数据库规模不大、检索精度已经能满足需求,很多场景下会直接用第一步检索出的结果,省去重排序环节,以提高整体响应速度。

8. 生成最终响应:让大语言模型“输出答案”

在这里插入图片描述

最后一步,就是让大语言模型(LLM)“登场”了。系统会把重排序后的文本块(或直接用检索出的文本块)和用户的问题,按照固定的“提示模板”组合起来,一起交给大语言模型。

比如模板可能是:“基于以下信息,回答用户问题:{检索到的文本块内容}。用户问题:{用户输入的问题}。请用简洁、自然的语言回答,确保信息准确。”

大语言模型会根据这个模板,结合自身的语言理解和组织能力,把零散的文本块信息整合成一段连贯、易懂的回答。整个过程就像厨师做菜:检索到的文本块是“食材”,提示模板是“菜谱”,大语言模型的加工能力就是“火候”,最后端出来的“菜品”,就是用户看到的最终答案。

三、总结:RAG系统的核心价值与优势

看完这8个核心环节,相信你对RAG系统的运作逻辑已经有了清晰的认识。简单来说,它就是通过“文本分块→生成嵌入→向量存储→用户查询→查询向量化→检索相似块→结果重排序(可选)→生成响应”这一系列步骤,把外部知识库和大语言模型的能力完美结合,最终给用户带来更优质的问答体验。

而RAG能成为当下热门的技术,主要得益于它的三大“杀手锏”:

  • 知识实时更新:只要定期向向量数据库补充新资料,系统就能获取最新信息,避免回答“过时内容”;
  • 回答可信度高:依托“检索+生成”模式,回答内容都能追溯到具体的文本来源,减少大语言模型“胡编乱造”的情况;
  • 应用场景广泛:无论是企业的智能客服(解答产品问题)、学生的学习助手(讲解知识点),还是职场人的信息查询工具(整理行业报告),RAG都能发挥作用。

希望通过这次分享,下次再聊到智能问答技术时,你不仅能熟练操作相关工具,还能清晰地讲出RAG的运作原理,真正做到“知其然,也知其所以然”。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

在这里插入图片描述

在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值