近期,关于大模型的就业前景引起了不少讨论,一方面,它代表了技术的最前沿,吸引了无数科技工作者的目光;另一方面,在现实就业中存在着一定的挑战。无论是在保研过程中,还是进入职场后,选择大模型相关的研究或岗位,都需要深刻认识行业的现状与未来发展。
今天就从大模型方向介绍、就业分析与建议两个方面,为大家提供一些实用的建议,帮助你们在未来的道路上做出更加适合自己的选择。
1、什么是大模型?
大模型是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等,例如如今常见的AI工具都是语言大模型产品。大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。
2、大模型的就业前景
根据招聘平台的数据,提及AIGC、大语言模型、大模型等关键词的岗位自ChatGPT等技术发布以来持续增长。在大模型行业,对于具有高级算法技术人才的需求尤为旺盛。大模型相关岗位的薪资相对较高,许多职位年薪可达到40万元以上,吸引了大量同学。
然而,人才需求仍然紧迫,尤其是在大模型预训练经验、Transformer框架应用等方面。竞争激烈的市场要求同学们具备扎实的编程和深度学习能力,持续跟进技术动态,成功入职需要较高的专业水平和经验积累。
来源:招聘网站
但另一方面,大模型的相关工作也有很多人劝退,要么是进入一些企业以后压力非常大,竞争激烈,需要大量的资源投入等等,要么就是进入一些国企以后觉得过于清闲,之前学过的内容用不上有很大的落差,所以想要选择大模型相关工作还是要做好调研,思考清楚再决定。
3、大模型的就业门槛?
大模型相关行业的招聘要求一般是要求学历最好是硕士且是985/211的同学,对学历还是有一定门槛的。
从事大模型相关岗位通常要求同学们具备以下技能:
►编程能力: 熟练掌握Python、C++等编程语言,具备良好的编程功底。
►深度学习框架: 熟悉深度学习框架,如PyTorch、TensorFlow等,以及相关的工具和库,如Hugging Face Transformers、DeepSpeed、Megatron-LM等。
►算法理解与应用: 掌握传统NLP、深度学习NLP相关算法,并具有相关实战经验。对深度学习、Transformer、预训练等有深入的理解和经验,能够根据论文复现相关算法。
►数据处理与清洗: 了解数据挖掘、数据清洗、数据预处理等流程,能够处理大规模数据集,并具备一定的数据挖掘和构造能力。
►模型开发与优化: 参与大规模预训练语言模型的研发、部署、微调,进行功能实现、性能优化、系统调优等工作。
4、就业分析与建议
► 提升技术能力
想要获得大模型相关的offer需要精通大模型相关的核心技术,包括深度学习、自然语言处理、机器学习算法等。熟练掌握Python、C++等编程语言,并深入理解深度学习框架如PyTorch、TensorFlow等,是基础要求。此外,了解并能够应用Transformer、BERT等大模型的架构与技术,能显著提高同学们的技术竞争力。
► 注重项目实践经验
技术能力的提升离不开实践经验的积累。参与开源项目、实习以及科研项目,不仅能丰富个人履历,还能提高解决实际问题的能力。同学们可以在学校里多尝试参加一些与大模型相关的项目,多接触与大模型相关的开发和优化任务,提升实战经验,还可以参与一些相关的竞赛去做一些创新或者根据比赛的内容发表一篇比较不错的论文。
► 持续学习与关注行业动态
大模型技术日新月异,同学们必须保持持续学习的状态,关注前沿研究和技术更新。参加技术论坛、研讨会,订阅相关领域的研究论文或技术博客,可以帮助同学们保持对最新趋势的敏感度。还可以选择相关的深度学习、AI认证课程,也有助于提升个人的学术和技术背景。
► 拓展跨领域的能力
大模型技术不仅仅局限于纯技术岗位,跨领域的复合型人才也在市场上受到高度重视。同学们可以拓宽自己的专业领域,比如结合金融、医疗、制造业等行业的知识,与大模型技术相结合,形成独特的竞争优势。跨领域背景的同学们能够在更多行业中找到适合自己的岗位,提升就业机会。
► 个人主页的建设
同学们可以建立一个自己的主页,不管是自己搭建一个还是在技术社区、社交媒体等平台都可以,在主页上展示自己的技术能力、项目成果以及研究成果,积极参与开源项目、技术博客的撰写和分享。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!