1、简介
Flink中借助watermark以及window和trigger来处理基于event time的乱序问题,那么如何处理“late element”呢?
也许有人会问,out-of-order element与late element有什么区别?不都是一回事么?
答案是一回事,都是为了处理乱序问题而产生的概念。要说区别,可以总结如下:
1、通过watermark机制来处理out-of-order的问题,属于第一层防护,属于全局性的防护,通常说的乱序问题的解决办法,就是指这类;
2、通过窗口上的allowedLateness机制来处理out-of-order的问题,属于第二层防护,属于特定window operator的防护,late element的问题就是指这类。
2、allowedLateness介绍
默认情况下,当watermark通过end-of-window之后,再有之前的数据到达时,这些数据会被删除。
为了避免有些迟到的数据被删除,因此产生了allowedLateness的概念。
简单来讲,allowedLateness就是针对event time而言,对于watermark超过end-of-window之后,还允许有一段时间(也是以event time来衡量)来等待之前的数据到达,以便再次处理这些数据。
默认情况下,如果不指定allowedLateness,其值是0,即对于watermark超过end-of-window之后,还有此window的数据到达时,这些数据被删除掉了。
注意:对于trigger是默认的EventTimeTrigger的情况下,allowedLateness会再次触发窗口的计算,而之前触发的数据,会buffer起来,直到watermark超过end-of-window + allowedLateness()的时间,窗口的数据及元数据信息才会被删除。再次计算就是DataFlow模型中的Accumulating(积累)的情况。
同时,对于sessionWindow的情况,当late element在allowedLateness范围之内到达时,可能会引起窗口的merge,这样,之前窗口的数据会在新窗口中累加计算,这就是DataFlow模型中的AccumulatingAndRetracting的情况。
/**
* 对于此窗口而言,允许5秒的迟到数据,即第一次触发是在watermark > end-of-window时
* 第二次(或多次)触发的条件是watermark < end-of-window + allowedLateness时间内,这个窗口有late数据到达
*/
val accumulatorWindow = watermarkDS
.keyBy(_._1)
.window(TumblingEventTimeWindows.of(Time.seconds(10)))
.allowedLateness(Time.seconds(5))
.apply(new AccumulatingWindowFunction)
.name("window accumulate test")
.setParallelism(2)
面试问题:什么情况下数据会被丢弃或者说不会被计算?
两种情况:
a.未设置allowedLateness情况下,某条数据属于某个窗口,但是watermark超过了窗口的结束时间,则该条数据会被丢弃;
b.设置allowedLateness情况下,某条数据属于某个窗口,但是watermark超过了窗口的结束时间+延迟时间,则该条数据会被丢弃;
也就是说如果一个key下面的某条数据如果延迟到来太多,就会被丢弃,这个问题无法解决的;
因为其他key的数据会上报就会提高watermark,最后触发窗口计算。