结合night compute分析 利用tensor core 优化K值较大的矩阵乘(超过cublas50%)

一 night compute分析

将cublas作为base line和现有的代码分析

图1.1

可以发现计算吞吐量明显偏低,能想到的就是计算单元处于空闲的概率较大,是访存密集型算子,因此可以增大数据的吞吐量,多给计算单元提供数据

二 代码

#include "common.h"


//mma计算的基本尺寸
#define MMA_M 16
#define MMA_N 8
#define MMA_K 16

//每个block包含的A的行数和B的列数
#define BLOCK_ROWS 256
#define BLOCK_COLS 128

#define WARP_ROWS 64
#define WARP_COLS 64

#define BLOCK_ROW_WARPS 2 // BLOCK_COLS / WARP_COLS
#define BLOCK_COL_WARPS 4 // BLOCK_ROWS / WARP_ROWS

#define BLOCK_ROW_TILES 16 // BLOCK_COLS / MMA_N
#define BLOCK_COL_TILES 16 // BLOCK_ROWS / MMA_M

#define WARP_ROW_TILES 8 // WARP_COLS / MMA_N
#de
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youzjuer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值