cutlass学习教程

一 接口

1.1 内存类

1.1.1 DeviceAllocation

1 位置

2 内置函数

(a)reset

/// Deletes the managed object and resets capacity to zero
void reset() {
  capacity = 0;
  smart_ptr.reset();
}
  /// Deletes managed object, if owned, and allocates a new object
  void reset(size_t _capacity) {
    reset(device_memory::allocate<T>(_capacity), _capacity);
  }

 在hbm分配_capacity大小的空间

 (b)get

/// Returns a pointer to the managed object
T* get() const { return smart_ptr.g
<think>用户现在需要CUTLASS的代码示例。首先,我需要回忆CUTLASS的基本用法,它主要是用于线性代数运算,尤其是GEMM(矩阵乘法)。用户可能希望看到一个简单的GEMM实现示例。 首先,CUTLASS使用模板元编程,所以需要定义模板参数,比如数据类型、矩阵布局(行主序或列主序)、分块大小等。然后,需要实例化对应的GEMM类,并调用运算。 需要注意的是,CUTLASS的接口比较底层,用户需要指定很多模板参数,比如ElementA、ElementB、ElementC(数据类型),LayoutA、LayoutB(矩阵布局),以及分块策略(如MmaCore的参数)。 接下来,我应该写一个简单的示例,比如单精度浮点数的矩阵乘法,行主序的布局。需要包含必要的头文件,比如cutlass/gemm/gemm.h,然后定义模板参数,实例化GEMM对象,准备输入输出矩阵,最后调用运算。 另外,需要确保代码的完整性和可编译性,但可能不需要完整的编译指令,因为用户可能只需要示例结构。同时,要解释每个部分的作用,比如分块大小的选择,模板参数的意义。 最后,检查是否符合用户的要求,是否清晰展示了CUTLASS的基本用法,包括模板参数的设置和运算调用。确保没有遗漏关键步骤,比如矩阵数据的初始化(虽然示例中可能简化为随机数据),以及运算后的结果验证(可能简化为输出)。</think>以下是一个使用CUTLASS实现单精度浮点矩阵乘法(GEMM)的简化代码示例,展示其基本用法: ```cpp #include <cutlass/cutlass.h> #include <cutlass/gemm/gemm.h> #include <cutlass/layout/matrix.h> int main() { // 定义矩阵维度:MxK * KxN = MxN int M = 1024, N = 1024, K = 1024; // 定义数据类型和矩阵布局(行主序) using Element = float; using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::RowMajor; using LayoutC = cutlass::layout::RowMajor; // 定义分块策略(关键性能参数,需根据GPU架构调整) using MmaCore = cutlass::gemm::warp::MmaTensorOp< cutlass::arch::OpMultiplyAdd, // 运算类型(FMA) Element, // 元素类型 cutlass::layout::RowMajor, // 线程块内A矩阵布局 cutlass::layout::ColumnMajor, // 线程块内B矩阵布局 cutlass::gemm::GemmShape<16, 16, 16>, // 线程块维度(M, N, K) cutlass::epilogue::ThreadwiseReduce< // 尾声处理(累加) cutlass::epilogue::thread::ScaleTypeBias<Element>, cutlass::gemm::GemmShape<4, 4, 4> // 每线程处理维度 >, cutlass::gemm::GemmShape<128, 128, 32> // 网格维度(M, N, K) >; // 实例化GEMM运算符 using Gemm = cutlass::gemm::Gemm< Element, LayoutA, Element, LayoutB, Element, LayoutC, Element, MmaCore >; // 分配矩阵内存(假设已初始化) Element *A = /* 输入矩阵A */; Element *B = /* 输入矩阵B */; Element *C = /* 输出矩阵C */; // 定义运算参数 typename Gemm::Arguments args{ M, N, K, // 矩阵维度 A, B, C, // 输入/输出指针 nullptr, nullptr, // 缩放因子(可选) Element(1), Element(0) // alpha=1, beta=0(C = alpha*A*B + beta*C) }; // 初始化GEMM运算 Gemm gemm_op; cutlass::Status status = gemm_op.initialize(args); if (status != cutlass::Status::kSuccess) { // 处理错误 return -1; } // 执行运算 status = gemm_op(); if (status != cutlass::Status::kSuccess) { // 处理错误 return -1; } return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youzjuer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值