
AI Agents 构建实战
文章平均质量分 90
系统性地解析 AI Agents 的核心概念、架构演进与前沿技术。通过主流与新兴框架实战,重点突出并深入探讨如何利用图结构(知识图谱、图查询、图神经网络思想)增强 Agent 的记忆、工具使用、规划推理能力,超越传统方法的局限。结合强化学习,助你构建具备更强自主性、更高可靠性的智能体。
(initial)
大模型方向,持续学习,乐于分享。公众号:智语Bot
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
第十二章:Agent 的未来:拥抱机遇,驾驭挑战
现在,站在这个专栏的终点,也是 Agent 技术新起点的门槛上,让我们将目光投向更广阔的地平线,共同探讨 Agent 的未来:它将如何重塑我们的世界?从基础概念到核心组件,从执行逻辑到高级工具,从智能策略到框架实战,再到评估、调试、多 Agent 系统,我们共同探索了构建自主智能体的方方面面,特别是深入体验了图增强技术带来的独特价值。让我们以开放的心态拥抱机遇,以审慎的态度驾驭挑战,以协作的精神凝聚智慧,共同努力,负责任地塑造一个人机和谐共生、智能技术真正服务于人类福祉的美好未来!这些美好前景的实现,原创 2025-04-21 00:15:00 · 636 阅读 · 0 评论 -
第十一章:多 Agent 系统:复杂协作、挑战与智能涌现
凭借其在表示复杂关系和结构化知识方面的独特优势,无疑将在构建下一代智能、协同、可信的 MAS 中扮演越来越重要的角色。在最后一章,我们将站在更高的角度,展望 AI Agent 的未来应用、面临的安全伦理挑战以及技术发展的宏伟蓝图。本章,我们将深入探索 MAS 的世界,理解其核心概念、架构模式、协作机制、面临的挑战,以及其中蕴含的独特潜力,特别是。我们探讨了构建 MAS 的动机、优势以及固有的挑战,了解了不同的架构模式、通信协议和协作机制。对智能涌现的深入理解和有效管理,是 MAS 研究的前沿和难点。原创 2025-04-20 12:48:57 · 921 阅读 · 0 评论 -
第十章:Agent 的评估、调试与可观测性:确保可靠与高效
它侧重于衡量 Agent 在处理科学文献方面的能力,例如:查找相关论文、总结论文核心贡献、比较不同论文的方法论、综合多篇论文的信息等。随着我们一步步构建出越来越复杂的 AI Agent,赋予它们高级工具和更智能的策略,一个至关重要的问题浮出水面:我们如何知道这些 Agent 是否真的有效、可靠?Agent 需要在模拟浏览器环境中,与如购物网站、论坛、项目管理工具等真实网站进行交互,完成信息查找、内容创建、在线预订等贴近实际应用的复杂任务,是评估 Agent 网页自主导航和操作能力的有力工具。原创 2025-04-20 12:14:53 · 1302 阅读 · 0 评论 -
第九章:强化学习(RL)赋能 AI Agents:潜力、挑战与问题建模
掌握 RL 的基本原理和问题建模方法,关注该领域的前沿进展,并对其应用难度保持清醒的判断,是我们在探索更智能 Agent 之路上应有的态度。本章,我们深入探讨了 RL 在赋能 Agent 运行时策略方面的核心思想,聚焦于问题建模(S/A/R)的严峻挑战,并参考了相关的代表性研究 [1-6]。然而,正如最新的 Agent 研究 [1] 和决策模型探索 [2] 所揭示的,将 RL 的强大潜力应用于复杂的 LLM Agent 是一项极具挑战的前沿课题。鉴于通用场景的难度,理解 RL 的潜力最好从分析其在。原创 2025-04-17 20:58:22 · 1366 阅读 · 0 评论 -
第八章:探索新兴趋势:Agent 框架、产品与开源力量
当我们尝试将早期 Agent(如 AutoGPT 的探索或基于简单 ReAct 循环的应用)投入到真实的、复杂的任务中时,往往会遇到一系列严峻的挑战:Agent 的行为。原创 2025-04-17 17:31:00 · 1153 阅读 · 0 评论 -
第七章:主流 Agent 开发框架实战 (二):AutoGen 与 CrewAI 的协作智能
在下一章,我们将把目光投向更远方,探索更多新兴的、面向特定领域(如编码、科学研究)的 Agent 框架,以及 Agent 技术未来的发展趋势与挑战。下面的代码将演示如何使用 CrewAI 构建一个包含两个 Agent 的简单 Crew:一个 Agent (Researcher) 负责查找关于 AI Agent 的信息,另一个 Agent (Writer) 负责基于前一个 Agent 的发现,撰写一段简短的介绍性文字。通过本章的代码实践,你将掌握构建更复杂、更协同的 AI Agent 应用的新武器。原创 2025-04-15 03:00:00 · 1058 阅读 · 0 评论 -
第六章:主流 Agent 开发框架实战 (一):LangChain 与 LlamaIndex
我们学习了它们的核心 API 与概念,体验了如何定义工具、配置 Agent 并观察其运行逻辑,特别是在 LlamaIndex 中实践了将知识图谱索引作为工具的强大功能。我们将学习如何利用这两个强大的框架,快速构建、配置和运行我们自己的 AI Agent,并通过具体的代码示例理解它们各自的设计哲学与核心优势。下面的代码将演示如何使用 LlamaIndex 构建一个简单的知识图谱索引,并将其作为工具提供给一个 ReAct Agent,用于回答基于图谱知识的问题。尝试问一个它没有工具能回答的问题,观察它的反应。原创 2025-04-15 02:30:00 · 1014 阅读 · 0 评论 -
第五章:提升 Agent “智慧”:高级规划、反思与图增强策略
准备好撸起袖子加油干吧!我们看到,一个真正“聪明”的 Agent,不仅要知道如何使用工具(能力),更要懂得何时反思、如何规划、以及策略性地寻求和利用知识(智慧)。但在面对更复杂、多步骤、需要探索多种可能性的任务时,或者**(联系)当简单的线性规划在反思中被证明不足时**,Agent 就需要更强大的规划“武器库”。在前几章中,我们为 AI Agent 构建了核心组件,赋予了它主流的执行逻辑,并装备了强大的高级工具。,显著提升其内在的“智慧”,使其在面对复杂、动态、不确定的任务时,表现得更加鲁棒、高效和智能。原创 2025-04-14 01:00:00 · 1268 阅读 · 0 评论 -
第四章:赋予 Agent “超能力”:高级工具使用(含图工具)
这就需要 Agent 具备更高级的“智慧”——更强的规划能力、自我反思与修正的机制、以及在各种信息源(包括我们重点讨论的图信息)之间进行策略性选择的能力。我们将从工具的基础管理谈起,探索工具链的编排策略,并重点拆解几种改变游戏规则的工具类型:代码执行、Web 浏览,以及我们专栏的“秘密武器”——如果说前几章我们描绘了 AI Agent 的“骨架”与“神经系统”,那么本章将为它装上强大的“义肢”与“传感器”,赋予其真正的**“超能力”最终,您将通过实操,亲手为您的 Agent 赋予这些强大的新能力。原创 2025-04-14 00:30:00 · 1523 阅读 · 0 评论 -
第三章:主流 Agent 执行逻辑:ReAct 与 Plan-and-Execute
我们会发现,对于这个相对直接的任务,P-a-E 可能会更直接高效(如果规划得当),但如果天气查询接口不稳定,ReAct 则有潜力表现出更强的适应性。ReAct 通过迭代的“思考-行动-观察”循环赋予了 Agent 灵活性和适应性,而 Plan-and-Execute 则通过“先规划后执行”的模式提供了更高的结构性和可预测性。在下一章,我们将聚焦于如何为 Agent 配备更强大的“武器库”——探索高级工具的使用,包括代码执行、Web 浏览,以及我们专栏特别关注的知识图谱查询工具。原创 2025-04-12 02:00:00 · 2283 阅读 · 0 评论 -
第二章:解构 AI Agent:核心组件与知识表示
选择合适的 LLM 是构建高效 Agent 的第一步,但这颗“大脑”需要其他组件的辅助才能充分发挥潜力。在本章中,我们拆解了 AI Agent 的核心构造:作为大脑的 LLM、负责记忆的存储模块(向量库与知识图谱的对比)、进行任务分解的规划模块,以及执行计划的行动模块。虽然具体的实现千差万别,但一个通用的 AI Agent 通常包含以下核心组件:核心大脑(LLM)、记忆模块、规划模块和行动模块。在第一章中,我们对 AI Agent 的概念、核心能力和面临的挑战有了宏观的认识。一个重要的基础技术是。原创 2025-04-12 00:30:00 · 759 阅读 · 0 评论 -
第一章:AI Agents - 智能自动化的新纪元
那么,究竟什么是 AI Agent?简单来说,AI Agent 是一种能够。原创 2025-04-11 10:00:00 · 1452 阅读 · 0 评论 -
引言:智能体崛起 - AI 走向自主
传统软件通常遵循固定的、预设的逻辑流程,而 Agent 则被设计为能够在一定程度上独立做决策、规划步骤,并根据环境反馈调整行为以实现目标。通过逐步构建和迭代这个“智能研究助手”,我们将把专栏中学习到的核心概念、技术组件(尤其是图增强部分)和框架知识融会贯通,让你在实战中真正掌握构建复杂 AI Agents 的能力。更重要的是,本专栏将。未来的 AI 不再仅仅是被动响应指令的工具,而是能够主动感知环境、制定计划、使用工具并达成目标的智能行动者。,助你构建出超越传统方法的、更强大、更可靠的智能体。原创 2025-04-11 09:00:00 · 729 阅读 · 0 评论