5.每个类别中的视频热度 Top10,以Music为例
需求分析: 先将user_orc表中的category(视频类别) 展开,可以创建一张表用于存放视频类别,然后向表中插入数据,最后统计对应类别(Music)中的视频热度
创建表
create table test(
videoId string,
uploader string,
age int,
categoryId string,
length int,
views int,
rate float,
ratings int,
comments int,
relatedId array<string>)
row format delimited
fields terminated by "\t"
collection items terminated by "&"
stored as orc;
插入数据
insert into table test
select
videoId,
uploader,
age,
categoryId,
length,
views,
rate,
ratings,
comments,
relatedId
from
user_orc lateral view explode(category) catetory as categoryId;
统计Music类别中的视频热度Top10
select
videoId,
views
from
test
where
categoryId = "Music"
order by
views
desc limit
10;
6. 每个类别中视频流量 Top10,以Music为例
需求分析: 直接在5中创建的表中按照ratings(流量)排序
select
videoId,
views,
ratings
from
test
where
categoryId = "Music"
order by
ratings
desc limit
10;
7.上传视频最多的用户 Top10 以及他们上传的视频
需求分析: 先找到上传视频最多的 10 个用户的用户信息,通过 uploader 字段与 youtube_orc 表进行 join,得到的信息按照 views 观看次数进行排序即可
select
t2.videoId,
t2.views,
t2.ratings,
t1.videos,
t1.friends
from (
select
*
from
video_orc
order by
videos desc
limit
10) t1
join
user_orc t2
on
t1.uploader = t2.uploader
order by
views desc
limit
20;
8.每个类别视频观看数 Top10
需求分析: 先得到 categoryId 展开的表数据,子查询按照 categoryId 进行分区,然后分区内排序,并生成递增数字,该递增数字这一列起名为 rank 列,通过子查询产生的临时表,查询 rank 值小于等于 10 的数据行即可
select
t1.*
from (
select
videoId,
categoryId,
views,
row_number() over(partition by categoryId order by views desc) rank from
test) t1
where
rank <= 10;
9.可能出现的问题
JVM堆内存溢出
解决办法: 在 yarn-site.xml 中加入如下代码
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.1</value>
</property>
<property>
<name>mapred.child.java.opts</name>
<value>-Xmx1024m</value>
</property>