使用倍增法优化二分查找(树状数组)

 

解题思路;通过离散化,统计每个数出现的次数,把树状数组的每个a[]变成每个数的个数,把树的c[]变成该数前面有几个小于自己的。之后查找优化为倍增即可

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

   int n, q;

    vector<int> tree(n + 2, 0);
    auto update = [&](int idx) {
        while (idx < tree.size()) {
            tree[idx]++;
            idx += idx & -idx;
        }
    };

    auto query = [&](int idx) {
        int res = 0;
        while (idx > 0) {
            res += tree[idx];
            idx -= idx & -idx;
        }
        return res;
    };树的查找基本原理

int main() {
    ios::sync_with_stdio(false);
    cin >> n >> q;
    vector<int> a(n);
    for (int i = 0; i < n; ++i) {
        cin >> a[i];
    }

//开始离散化
    vector<int> sorted = a;
    sort(sorted.begin(), sorted.end());
    sorted.erase(unique(sorted.begin(), sorted.end()), sorted.end());

    for (int x : a) {
        int rank = lower_bound(sorted.begin(), sorted.end(), x) - sorted.begin() + 1;
        update(rank);
    }
    while (q--) {
        int k;
        cin >> k;
        int idx = 0;
        int sum = 0;
        for (int i = 20; i >= 0; --i) { 
            int next = idx + (1 << i);
            if (next < tree.size() && sum + tree[next] < k) {
                sum += tree[next];
                idx = next;
//倍增法//传统二分查找每次需要 O (log n) 次查询。倍增法通过二进制跳跃,将查询次数优化到 O (log n) 次,但每次跳跃的步长更大。对于大规模数据,常数因子更小,实际运行速度更快

            }
        }
        cout << sorted[idx] << '\n';
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值