解题思路;通过离散化,统计每个数出现的次数,把树状数组的每个a[]变成每个数的个数,把树的c[]变成该数前面有几个小于自己的。之后查找优化为倍增即可
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int n, q;
vector<int> tree(n + 2, 0);
auto update = [&](int idx) {
while (idx < tree.size()) {
tree[idx]++;
idx += idx & -idx;
}
};
auto query = [&](int idx) {
int res = 0;
while (idx > 0) {
res += tree[idx];
idx -= idx & -idx;
}
return res;
};树的查找基本原理
int main() {
ios::sync_with_stdio(false);
cin >> n >> q;
vector<int> a(n);
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
//开始离散化
vector<int> sorted = a;
sort(sorted.begin(), sorted.end());
sorted.erase(unique(sorted.begin(), sorted.end()), sorted.end());
for (int x : a) {
int rank = lower_bound(sorted.begin(), sorted.end(), x) - sorted.begin() + 1;
update(rank);
}
while (q--) {
int k;
cin >> k;
int idx = 0;
int sum = 0;
for (int i = 20; i >= 0; --i) {
int next = idx + (1 << i);
if (next < tree.size() && sum + tree[next] < k) {
sum += tree[next];
idx = next;//倍增法,//传统二分查找每次需要 O (log n) 次查询。倍增法通过二进制跳跃,将查询次数优化到 O (log n) 次,但每次跳跃的步长更大。对于大规模数据,常数因子更小,实际运行速度更快
}
}
cout << sorted[idx] << '\n';
}
}