最大单调序列最大值,电影票售卖时间,最长有序子数列,最长公共子序列

 最大单调序列最大值

#include<bits/stdc++.h>
using namespace std; 
int dp(vector<int> &nums){
	int n=nums.size();
	vector<int> p(n,0);
	int s=p[0]=nums[0];
	for(int i=1;i<n;i++){
		p[i]=nums[i];
		for(int j=0;j<i;j++){
			if(nums[i]>nums[j]){
				p[i]=max(p[i],p[j]+nums[i]);
			}
		}
		s=max(s,p[i]);
	}
	return s;
	
} 


int main() {
	int n;
    while (cin >> n && n != 0) { 
        vector<int> nums(n);
        for (int i = 0; i < n; ++i) {
            cin >> nums[i];
        }
        cout<<dp(nums)<<endl;
	}
    return 0;
}

 

  • 先初始化 dp 数组,dp[i] 表示以第 i 个小姐姐魅力值结尾的符合 “递增” 要求的子序列的最大魅力和。
  • 外层循环遍历每个魅力值,内层循环用于查找当前魅力值之前所有比它小的魅力值对应的 dp 值,更新当前 dp[i],保证其是满足递增条件下的最大和。
  • 同时维护一个 max 变量,实时更新全局最大的魅力和。

 

 

 

#include<bits/stdc++.h>
using namespace std; 
void ot(int n){
	if(n<10)cout<<"0"<<n;
	else cout<<n;
}
void time(int o){
	int a,b;
	a=o/3600+8;
	o%=3600;
	b=o/60;
	o%=60;
	if(a>12){
		a-=12;
		ot(a);
		cout<<":";
		ot(b);
		cout<<":";
		ot(o);
		cout<<" pm"<<endl;
	}
	else{
		ot(a);
		cout<<":";
		ot(b);
		cout<<":";
		ot(o);
		cout<<" am"<<endl;		
	}
	
}
int main() {
	int n,k,a[2005],b[2005],dp[2005];
	cin>>n;
	while(n--){
		cin>>k;
		int o=0;
		if(k==1)cin>>a[1],o=a[1];
		else{
			for(int i=1;i<=k;i++)cin>>a[i];
			for(int i=2;i<=k;i++)cin>>b[i];
			dp[1]=a[1];
			for(int i=2;i<=k;i++){
				dp[i]=min(dp[i-1]+a[i],dp[i-2]+b[i]);
			}
			o=dp[k];
		}
		time(o);
	}
    return 0;
}

 

最长有序子数列

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main() {
    int n;
    cin >> n;
    vector<int> a(n);
    for (int i = 0; i < n; i++) {
        cin >> a[i];
    }

    vector<int> dp(n, 1);
    for (int i = 1; i < n; i++) {
        for (int j = 0; j < i; j++) {
            if (a[j] < a[i]) {
                dp[i] = max(dp[i], dp[j] + 1);
            }
        }
    }

    int maxLength = 0;
    for (int len : dp) {
        maxLength = max(maxLength, len);
    }

    cout << maxLength << endl;
    return 0;
}    

 

  1. 输入处理:程序首先读取序列长度n,然后读取序列中的每个元素。
  2. 动态规划数组dpdp[i]表示以第i个元素结尾的最长递增子序列的长度,初始值都设为 1。
  3. 状态转移:对于每个元素a[i],检查其前面的所有元素a[j](其中j < i。如果a[j] < a[i],则可以将a[i]接在以a[j]结尾的子序列后面,形成一个更长的子序列。
  4. 结果计算:遍历dp数组,找出其中的最大值,即为整个序列的最长递增子序列长度

 

最长公共子序列(长度一致版但是适合大数

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main() {
    int n;
    cin >> n;
    
    string a, b;
    cin >> a >> b;
    
    // 构建每个字符在a中出现的所有位置(按顺序存储)
    vector<int> pos[256];
    for (int i = 0; i < n; i++) {
        pos[a[i]].push_back(i);
    }
    
    // 构建转换后的数组
    vector<int> converted;
    for (char c : b) {
        // 如果字符不在a中出现,跳过
        if (pos[c].empty()) continue;
        // 对于每个字符,使用其在a中出现的位置的逆序
        // 这确保了每个字符最多被使用一次,避免重复匹配
        for (auto it = pos[c].rbegin(); it != pos[c].rend(); ++it) {
            converted.push_back(*it);
        }
    }
    
    // 计算LIS
    vector<int> f;
    for (int x : converted) {
        auto it = lower_bound(f.begin(), f.end(), x);
        if (it == f.end()) {
            f.push_back(x);
        } else {
            *it = x;
        }
    }
    
    cout << f.size();
    return 0;
}

使用贪心算法和二分查找来计算最长公共子序列的长度 

  • 数组f用于保存递增子序列,f[i]表示长度为i的递增子序列末尾元素的最小值。
  • 对于字符串b中的每个字符,先通过mp数组找到其在字符串a中的位置。
  • 接着,利用二分查找确定该位置在f数组中的插入点,以此来维护递增子序列的性质。

 不同长度,多次输入版

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;

int main() {
    string s1, s2;
    // 持续读取输入,直到文件结束(EOF)
    while (cin >> s1 >> s2) {
        int m = s1.length();
        int n = s2.length();
        // 创建一个二维数组dp来存储子问题的解
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
        
        // 填充dp数组
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (s1[i - 1] == s2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        
        // 输出最长公共子序列的长度
        cout << dp[m][n] << endl;
    }
    
    return 0;
}

典型dp,没有前者高效 

  1. 输入处理

    • 借助while (cin >> s1 >> s2)达成循环读取输入的目的。
    • 此循环会一直运行,直到输入结束(也就是遇到 EOF,在 Windows 系统中可按 Ctrl+Z,在 Unix/Linux 系统中可按 Ctrl+D)。
  2. 动态规划数组

    • dp[i][j]所表示的是s1的前i个字符和s2的前j个字符的最长公共子序列的长度。
  3. 状态转移方程

    • s1[i-1]等于s2[j-1]时,dp[i][j]的值为dp[i-1][j-1] + 1
    • 若不相等,dp[i][j]的值为max(dp[i-1][j], dp[i][j-1])
  4. 输出结果

    • 每次处理完一组输入后,都会输出dp[m][n]的值,也就是两个字符串的最长公共子序列的长度。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值