这一题看似就是一个有权值的最短路问题,但是中间有K次免费,这几次免费会造成非常大的影响,所以我们把原图,复制多份,然后每上下两个图之间,每个点的和另一个图所有与自己本图连通点的对应点有一个权值为0 的路径,比如,12,13连通,就在1与2.2,1与2.3建立两条0权值。跑到2层,就开始在2层与3层跑,一直跑到k+1层,最终终点变成t+n*k。。
之后就是用dijkstra跑s到t+n*k的最短路了!
不会dijkstra或者建图,建议看这里
#include <bits/stdc++.h>
using namespace std;
const int N = 110005, INF = 0x3f3f3f3f; // 定义最大节点数和无穷大常量
// 边结构体:存储边的目标节点、下一条边的索引和边权值
struct Edge { int to, next, cost; } edge[2500001];
int cnt = 0, head[N]; // 边计数器和邻接表头数组
int dis[N]; // 存储最短路径距离
bool vis[N]; // 标记节点是否已处理
// 快速添加边到邻接表
inline void add_edge(int u, int v, int c = 0) {
edge[++cnt] = {v, head[u], c}; // 插入新边,使用聚合初始化
head[u] = cnt; // 更新表头为最新边的索引
}
// Dijkstra算法:计算从起点s出发到所有节点的最短路径
void Dijkstra(int s) {
memset(dis, 0x3f, sizeof(dis)); // 初始化为无穷大
dis[s] = 0; // 起点到自身距离为0
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q;
q.push({0, s}); // 优先队列存储{距离, 节点}对
while (!q.empty()) {
int u = q.top().second; q.pop();
if (vis[u]) continue; // 跳过已处理的节点
vis[u] = 1; // 标记节点为已处理
for (int i = head[u]; i; i = edge[i].next) { // 遍历所有邻接边
int v = edge[i].to, c = edge[i].cost;
if (dis[v] > dis[u] + c) { // 松弛操作
dis[v] = dis[u] + c;
q.push({dis[v], v}); // 将更新后的节点加入队列
}
}
}
}
int main() {
int n, m, k, s, t; // n:城市数 m:航线数 k:免费次数 s:起点 t:终点
scanf("%d%d%d%d%d", &n, &m, &k, &s, &t);
// 构建分层图
for (int i = 0, u, v, c; i < m; ++i) {
scanf("%d%d%d", &u, &v, &c); // 输入每条航线
// 原始层的双向边
add_edge(u, v, c);
add_edge(v, u, c);
// 构建k层分层图
for (int j = 1; j <= k; ++j) {
// 免费升级边:从j-1层到j层,边权为0
add_edge(u + (j - 1) * n, v + j * n, 0);
add_edge(v + (j - 1) * n, u + j * n, 0);
// 同层边:在第j层内移动,边权为c
add_edge(u + j * n, v + j * n, c);
add_edge(v + j * n, u + j * n, c);
}
}
// 允许在终点使用免费次数,但不移动位置
for (int i = 1; i <= k; ++i)
add_edge(t + (i - 1) * n, t + i * n, 0);
Dijkstra(s); // 从起点开始计算最短路径
printf("%d\n", dis[t + k * n]); // 输出使用k次免费后的最短路径
return 0;
}
无 注释版
#include <bits/stdc++.h>
using namespace std;
const int N = 110005, INF = 0x3f3f3f3f;
struct Edge { int to, next, cost; } edge[2500001];
int cnt = 0, head[N], dis[N];
bool vis[N];
inline void add_edge(int u, int v, int c = 0) {
edge[++cnt] = {v, head[u], c};
head[u] = cnt;
}
void Dijkstra(int s) {
memset(dis, 0x3f, sizeof(dis));
dis[s] = 0;
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q;
q.push({0, s});
while (!q.empty()) {
int u = q.top().second; q.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = head[u]; i; i = edge[i].next) {
int v = edge[i].to, c = edge[i].cost;
if (dis[v] > dis[u] + c) {
dis[v] = dis[u] + c;
q.push({dis[v], v});
}
}
}
}
int main() {
int n, m, k, s, t;
scanf("%d%d%d%d%d", &n, &m, &k, &s, &t);
for (int i = 0, u, v, c; i < m; ++i) {
scanf("%d%d%d", &u, &v, &c);
add_edge(u, v, c);
add_edge(v, u, c);
for (int j = 1; j <= k; ++j) {
add_edge(u + (j - 1) * n, v + j * n);
add_edge(v + (j - 1) * n, u + j * n);
add_edge(u + j * n, v + j * n, c);
add_edge(v + j * n, u + j * n, c);
}
}
for (int i = 1; i <= k; ++i)
add_edge(t + (i - 1) * n, t + i * n);
Dijkstra(s);
printf("%d\n", dis[t + k * n]);
return 0;
}