随着大模型和向量数据库的快速发展,我们需要重新考虑:SQL 是否仍然是进行数据库查询的最佳方式?
下文我们详细剖析之。
1、自然语言交互,数据库查询的另一种解法
设想这样一个场景,你不再需要编写繁琐的 SQL 查询语句,只需简单地说:“找出最近购买习惯和我相似的用户最偏爱的商品。”
AI 应用理解了你的请求后,会迅速做出决策:
- 是应该查询结构化数据表吗?
- 还是需要执行一次向量相似度搜索?
- 是否需要调用外部服务来补充数据?
一旦这些决策完成,数据库将自动处理所有执行细节,并返回你所期望的结果。
这种操作方式为用户带来的主要好处包括:
- 无语法障碍,我们无需记忆字段名称,不必担心括号匹配问题,表达需求变得更加自然。
- 对非结构化数据的查询更加友好,无论是图像、音频还是文本,都可以作为查询的对象。
- 该系统的用户群体将更加广泛:不仅是工程师可以使用,运营人员、产品经理甚至市场部门的同事都能够与数据进行互动。
2、自然语言交互背后是 AI 智能体调度
要实现自然语言交互,行业里普遍采用的是一种组合方法,包括:自然语言解析 + 向量检索 + AI 智能体调度。
在这一过程中,AI 智能体调度扮演着至关重要的角色,它主要负责以下四个核心功能:
- 解析意图:确定用户想要查询的字段、数据库以及索引。
- 选择策略:决定是进行结构化数据的过滤,还是执行向量检索,或者是两者的结合。
- 调用能力:直接执行 API、触发S DK,甚至跨服务进行联合操作。
- 结果包装:不是简单地返回一堆杂乱无章的 JSON 数据,而是提供用户能够立即理解的结果。
举个例子,在向量数据库 Milvus 中,只需一行代码就能完成一次复杂的相似度检索:
results = collection.search(query_vector, top_k=10, filter="is_active == true")
这种“API 优先”的方法,非常适合大模型的 Function Calling 和 MCP 能力,它使得执行速度更快,出错几率更低,同时也更容易实现标准化和集成。
3、为什么 SQL 不适合做向量检索?
普遍认为,非结构化数据占全球数据总量的80%,而向量数据库与传统的关系型数据库相比,更自然地支持自然语言查询,也更适合与大模型配合使用。
当然,为了弥补传统关系型数据库在查询非结构化数据方面的不足,许多这类数据库引入了“类似 SQL 的向量检索”功能。比如:PostgreSQL 结合 PGVector 提供了<->运算符,使得下面的查询语句看起来相当“先进”:
SELECT *
FROM items
ORDER BY embedding <-> query_vector
LIMIT 10;
但这种表面的“兼容性”实际上带来了新的问题:这类 SQL 并非标准化,导致开发者需要付出更高的学习成本。此外,在关系型数据库中存储向量数据还存在严重的性能问题:
- 执行路径复杂:传统数据库会强制执行解析器、优化器、事务等复杂的逻辑路径,这导致消耗了大量额外的资源。
- I/O压力大:向量数据以 BLOB 形式存储,每次检索都需要解码;在图索引场景中,还可能频繁地访问磁盘,极大地消耗性能。
我们进行过一项测试,在相同的检索条件下**,Milvus 的查询延迟仅为 pgvector 的40%,吞吐量却提升了4.5倍**。换句话说,传统关系型数据库添加向量检索功能,实际上反而增加了系统的复杂性。
总的来说,关系型数据库和向量数据库在设计哲学、数据结构和查询逻辑上有着根本的不同:
4、总结
总之,AI 大模型新时代,向量数据库具有四大优势:
- 兼容多种数据模型: 现实世界中的数据远比表格形式复杂得多。向量数据库能够灵活地支持嵌套文档、时间序列向量,以及如 ColBERT、CoLPAL 等多向量结构,以适应不同模型生成的丰富语义表示。
- 为 AI 智能体设计的友好 API: 大模型更倾向于调用函数而非编写 SQL。向量数据库采用以 Python 为主的 API 设计,原生支持函数调用,只需一行代码即可完成嵌入检索、过滤、重排序和语义高亮,显著降低了开发和运维成本。
- 深度语义理解: 向量数据库不仅仅是执行命令,它还能理解查询意图。与 AI 智能体协作,它可以超越“字面匹配”的限制,实现语义层面的智能检索,使未来的数据库不仅要“知道如何查询”,更要“理解你真正想要查询的内容”。
- 极致优化召回率: 通过结构化过滤、混合检索、重排序(Rerank)等技术,向量数据库可以不断优化搜索结果的相关性,找回更多真正有价值的内容,实现性能与召回率的平衡。
向量数据库的目的并非取代关系型数据库,更多情况下,它是一种专为 AI 场景设计的新型基础设施,能够更好地响应自然语言查询,也能检索语义信息。最终,让数据库从僵硬的执行者转变为真正理解上下文、主动辅助决策的数据智能体。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!