论文阅读: Clothes-Changing Person Re-identification with RGB Modality Only

本文介绍了一种创新方法,通过RGB图像处理消除衣物特征影响,提出CCVID换衣视频数据集,并设计Clothes-Agnostic模型。模型包含身份和衣物分类器,使用衣物标签减少标注复杂性。文章重点讲解了衣物无关特征学习和针对换衣/不换衣场景的优化策略,以及Curriculum Learning的训练策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文阅读: Clothes-Changing Person Re-identification with RGB Modality Only

  • 这篇文章提出了很巧妙的思想从RGB图像中去除衣服特征的影响,同时兼顾了换衣和不换衣的情况;同时提出从一个步态数据集中通过检测获得一个视频换衣数据集 CCVID。

  • 整体框架图
    在这里插入图片描述

  • 模型包括身份分类器和衣服分类器:身份分类器就是传统的利用身份标签进行分类,衣服分类是根据衣服标签进行分类。

  • 衣服类别的标注是采用了一种简单的策略,通过人工进行标注的。对同一身份的图像穿不同衣服的分成不同类别,这样不同身份的行人即便穿相同衣服也会被分为不同类,但是减少了标注的困难。

  • 衣服分类器训练
    在这里插入图片描述

  • 训练好衣服分类器后,固定参数,让LIDL_{ID}LIDLCAL_{CA}LCA( Clothes-based Adversarial Loss)联合训练学习衣服无关特征。

  • LIDL_{ID}LID没啥说的,来看下LCAL_{CA}LCA
    在这里插入图片描述
    这其实就是一个细粒度多类别的身份分类器(文中称为multi-positive-class classification loss),若图像属于同一身份的衣服类,则概率为1/K,K为该身份行人的衣服类别数。而不属于该身份的衣服类,在概率为0。——这样就使得模型不去区分一个人穿什么衣服,而只关注身份本身。

  • 但是,这样带来的问题是:会对换衣情况下的身份识别有帮助,但是对不换衣情况下会降低效率。为此,对该公式进行调整,增大同一身份相同衣服的概率,这样就使得模型在关注身份的同时,会去关注部分衣服特征。在这里插入图片描述

  • 最后,就是联合优化。训练时,直接让两个函数同时优化,会使模型难以收敛,于是采用Curriculum Learning(课程式学习,由易到难)的优化方式。先用身份损失LIDL_{ID}LID去训练模型, 这样模型就具有基本的识别能力;在第一次学习率下降时,增加LCAL_{CA}LCA参与训练。
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值