
数据化
文章平均质量分 81
Leo.yuan
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
为什么同样做经营分析,业务和财务说的不一样呢?
揭示了企业数字化转型中的核心痛点:1)业务与财务对"销售额"等基础指标存在口径差异;2)时效性矛盾(业务要实时数据VS财务需合规滞后);3)视角分歧(财务重核算逻辑VS业务求因果分析)。解决关键在于建立《业财数据字典》统一标准,并用BI工具打通数据孤岛,实现"业务动态"与"财务合规"的平衡。真正的业财融合不是相互说服,而是通过数据翻译建立共识,让数字既反映业务实质又符合财务规范。原创 2025-07-24 20:22:29 · 885 阅读 · 0 评论 -
30个供应链指标与计算公式汇总,直接套用
本文系统梳理了供应链管理的6大类30个关键指标,涵盖了运营效率、财务健康、客户服务、供应商协同、数字化创新及可持续风险等维度。这些指标不仅能量化供应链绩效,更能帮助企业精准定位问题所在。文章强调指标应用需要结合行业特性,避免生搬硬套,并建议企业定期检查核心指标、打破数据孤岛、抓重点指标分阶段优化。通过科学运用这些指标,企业可以实现从单一数据监控到供应链全链路协同管理的升级。原创 2025-06-13 21:13:10 · 1165 阅读 · 0 评论 -
2小时,我搭了一套项目全生命周期看板!
针对研发项目管理中人工成本高、进度不透明等痛点,本文提出基于数据可视化的全生命周期监控方案。通过构建五步分析体系:1)明确年度规划执行、项目进度等监控目标;2)建立包含5大类20余项指标的数据体系;3)整合多系统数据源;4)采用仪表盘+趋势图的可视化布局;5)设置动态预警机制。实施效果显示:规划执行率达100%,但项目完成率(62.1%)和配方签批率(55%)存在优化空间。建议从资源调配、流程简化、创新激励三方面改进。原创 2025-06-12 20:36:19 · 602 阅读 · 0 评论 -
数据管理四部曲:元数据管理、数据整合、数据治理、数据质量管控
元数据管理、数据整合、数据治理与数据质量管控,共同构成了企业数据管理的四部曲。清晰准确的元数据是整合、治理和质量工作的基础;有效的整合依赖于治理规则和质量的约束;治理目标的达成离不开元数据支撑和质量的度量;而高质量数据的产生与维持,更是需要前三者的共同保障。四者环环相扣,相互依存。将这四项能力协同推进,建立贯穿数据生命周期的管理体系,才能将海量、无序的数据真正转化为驱动业务增长、支持精准决策、保障合规安全的战略资产。原创 2025-06-12 20:17:38 · 951 阅读 · 0 评论 -
数据库该怎么管?盘点10大最好用的数据库管理工具!
企业级首选FineDataLink:强在数据集成/实时同步,支持多数据源,低代码操作,适合ETL与数据仓库建设Navicat:付费工具提供数据治理/SSH加密,但大数据处理性能有限开发者友好DataGrip:智能SQL补全,与Git深度集成,适合团队协作开发DBeaver:开源免费支持80+数据库,但内存占用较高轻量化方案HeidiSQL:专注MySQL,批量操作高效phpMyAdmin:Web端零安装,适合中小网站专项优化工具Toad:Oracle性能调优专家原创 2025-06-11 21:51:33 · 2260 阅读 · 0 评论 -
什么是数据交换?有哪些数据交换方式?
数据交换是实现系统间数据共享的关键技术,面临数据格式差异、标准不统一、安全隐私和网络性能四大挑战。常见交换方式包括传统文件交换、高效数据库直连、灵活的中间件交换和实时的API接口交换。未来发展趋势将聚焦实时性提升、标准化规范和安全增强。通过优化交换技术和方式,可有效应对挑战,促进数据高效流通,为企业创造更大价值。原创 2025-06-11 21:31:31 · 1283 阅读 · 0 评论 -
好的物料管理做对了什么?一文搞懂物料管理6大指标+4步方法
物料管理是制造业成本控制的关键环节,直接影响5%-10%的项目成本。文章提出6大核心指标监测体系(采购达成率、超额定领用、周转天数等),并给出四步分析法:采购订单追踪、剩余物料分类处置、金额趋势验证、BOM反向核销。针对执行难点,推荐ABC-XYZ矩阵、呆滞根因树等工具,结合区块链技术解决权责纠纷。通过系统化管理,企业可将剩余物料二次利用率提升至40%以上,实现库存资金优化与合规风险防控,最终构建贯穿采购、生产、仓储的物料全生命周期管理体系。原创 2025-05-26 18:57:44 · 888 阅读 · 0 评论 -
主数据管理是什么?一文搞懂主数据管理的核心方法论!
综上所述,主数据管理是企业数据治理的核心内容,对于企业的发展具有重要意义。通过明确主数据管理的定义和特点,企业可以采取有效的措施做好主数据管理工作,从而获得提高决策质量、提升运营效率、降低运营成本、增强合规性和促进业务创新等多方面的成效。原创 2025-05-06 20:00:05 · 780 阅读 · 0 评论 -
新质生产力,一文说透!企业数字化转型必读指南
新质生产力的构建是关乎企业存续的战略性工程。通过拆解“12345”核心框架,我们已清晰看到:从科技创新驱动到全链条数字化重构,从破除数据孤岛到培育复合型人才,每个环节都需要精准发力。面对政府工作报告提出的战略导向,企业应把握三个核心动作:1.坚持创新思维:将研发投入占比提升至5%以上,建立技术攻关专项小组;2.打通数据链路:参考我正文中提到制造企业转型案例,搭建跨系统数据中台实现业务协同;3.规避转型陷阱:警惕盲目抛弃传统产能、重复建设等误区,制定分阶段实施路径。原创 2025-05-06 19:40:25 · 819 阅读 · 0 评论 -
一文梳理业财融合在财务管理中的运用!
综上所述,业财融合在财务管理中的运用意义重大:加强成本控制,深入挖掘业务流程中的成本潜力;优化资金管理,使资金配置与业务需求紧密结合,提高资金使用效率;提升财务分析价值,为企业提供更具深度和广度的分析报告,支持企业的战略决策。原创 2025-04-28 22:24:37 · 988 阅读 · 0 评论 -
熬夜整理了8大数据可视化大屏工具!总有一款适合你!
零代码操作,适配国内数据源,组件丰富,实时更新生态系统不完善,需借助外部资源大中型企业,业务部门快速可视化、特定场景展示Tableau多源数据整合,可视化强,交互丰富学习成本高,价格贵,依赖硬件大型企业、数据驱动决策场景Power BI与微软生态集成,操作友好,数据处理强,实时交互高级功能难学,安全管理复杂,定制受限微软生态企业、自助式分析D3.js高度自定义,交互动态,开源免费编程门槛高,开发效率低,无可视化设计工具。原创 2025-04-27 20:50:43 · 1546 阅读 · 0 评论 -
产销协同是什么?产销协同流程有哪些?
产销协同绝非简单的数据互通与流程衔接,而是企业提升核心竞争力的关键引擎。据艾瑞咨询研究显示,实施高效产销协同的企业,库存周转率平均提升 35%,订单交付周期缩短 28%,运营成本降低 15%-20%。实践证明,只有以数据驱动打破部门壁垒,精准匹配生产与市场需求,企业才能在激烈的市场竞争中实现降本,抢占发展先机。原创 2025-04-26 15:32:07 · 1160 阅读 · 0 评论 -
数据仓库是什么?数据仓库架构有哪些?
通过合理的架构分层,数据仓库能够有效地整合企业的数据资源,为企业的决策和业务优化提供支持。尽管面临着一些挑战,但随着技术的不断进步,数据仓库也将不断发展和完善。数据仓库建设解决方案 - 帆软数字化资料中心。原创 2025-04-24 14:55:17 · 2433 阅读 · 0 评论 -
人效分析怎么做?一文构建人效管理黄金体系!
人效分析的本质,是将“人力成本”转化为“战略资产”。通过量化员工投入产出比、构建动态监测体系,企业不仅能实现降本增效,更能为组织架构优化、人才梯队建设提供长效支撑。通过科学、系统地进行人效分析,企业可以更好地了解员工的绩效表现,优化人力资源配置,制定合理的人力资源策略,从而在激烈的市场竞争中保持领先优势。人效分析的最终目的是为了优化管理决策和提升企业效能,在分析完成后,就可以根据分析结果制定相应的行动方案,并建立反馈机制,对于发现的问题和风险,及时进行调整和优化等。原创 2025-03-26 17:25:35 · 810 阅读 · 0 评论 -
什么是数据标准?企业进行数据标准管理有这么多好处?
数据标准管理构成了数据管理的核心部分,代表着企业数据治理的起点。它在企业中发挥着至关重要的作用,包括梳理数据资产、消除数据孤岛现象、加速数据流转以及激发数据的潜在价值。通过确立和维护统一的数据标准,企业能够确保数据的一致性和准确性,从而为数据驱动的决策和业务流程提供坚实的基础。本文将深入探讨数据标准管理的概念、重要性、挑战。通过本文的探讨,我们希望能够帮助读者更好地理解数据标准管理的价值,以及如何通过有效的数据标准管理实践,提升组织的数据管理能力,实现数据驱动的增长和创新。原创 2024-07-11 17:48:58 · 1111 阅读 · 0 评论 -
IT部门不想每天忙“取数”,花了几百万买系统,还是这个办法有效
待过几年中小型传统企业的应该都有这个感知:虽然每个月都在采购新的软件系统,但整个公司的数字化仍旧一团糟,数字化转型是越搞越回去了。这也很好解释。传统企业业务部门繁多,在搞信息化阶段采购了很多业务系统,比较常见的像OA、ERP、MES等,后续随着业务部门的发展,又会分别添置新的业务系统。这些业务系统的数据又来自不同的数据库,像Oracle、SQL Server、My sql,各个系统的数据库存储方式不同,大多都是多源异构数据,很难互通更别说整合。原创 2022-11-17 11:55:28 · 842 阅读 · 3 评论 -
如何做一张领导满意、支撑决策的报表?这三个特点,一定要满足
这年头,谁都懂些数据分析的知识,但真正能“支撑决策”的却少之又少。常常就是,做了一堆报表,不是留在自己的电脑里占内存,就是挂在公司的系统中吃灰。一个是个人的数据分析能力。分不清决策层级,把握不了细节程度,不知道用什么展现分析结果。另一个是对业务的熟悉程度。理解不透彻业务的需求,分析了一堆,一点用都没有。原创 2022-11-11 11:06:28 · 317 阅读 · 0 评论 -
资深报表开发经验总结:明白这一点,没有做不好的报表
加班开发的报表压根没人看,需求越来越多却无法产出价值,最后就是工作没有成就感,生活也一团乱糟,各种怀疑人生。原创 2022-07-22 10:49:28 · 1074 阅读 · 0 评论 -
熬夜整理的40份可视化报表,改个数据就能直接用,赶紧点赞收藏
整理出40套模板,大家可以只改个数据源,就能一键套用啦,超级简单易上手。原创 2022-07-12 13:50:11 · 671 阅读 · 5 评论 -
漫画也能讲清数据治理
数据质量是指数据满足准确性、完整性、时效性、一致性、唯一性、关联性、适当性、有效性及可获取性的程度。转载 2022-07-11 11:27:15 · 379 阅读 · 0 评论 -
8大模块、40个思维模型,打破思维桎梏,满足你工作不同阶段、场景的思维需求,赶紧收藏慢慢学
从100个思维模型里,整理出40个工作中最常会用到的思维模型,主要分为八大模块(学习力、思考力、创造力、设计力、共情力、故事力、领导力、整合力),可以帮助你由浅入深对不同方向的思维模型进行学习。...原创 2022-07-07 11:35:24 · 1466 阅读 · 0 评论 -
零代码高回报,如何用40套模板,能满足工作中95%的报表需求
当数据分析师不需要取数和做报表时,他们能有时间做更重要的事原创 2022-07-05 14:40:37 · 518 阅读 · 0 评论 -
一直以为做报表只能用EXCEL和PPT,直到我看到了这套模板(附模板)
其实报表真的不是数据分析师门的工作中心,懂业务才是。但报表的制作往往却也占据着数据分析师的大部分精力,所以我的建议是借助工具,借助模板,学会给自己减负!原创 2022-07-04 09:26:48 · 321 阅读 · 2 评论 -
数据分析师听起来很高大上?了解这几点你再决定是否转型
数据分析师的那些事,你想知道的都有原创 2022-07-01 13:42:10 · 834 阅读 · 0 评论 -
知乎热议:计算机会是下一个土木吗?
2022年大规模裁员后,计算机专业会不会成为下一个土木?转载 2022-06-29 11:16:59 · 537 阅读 · 0 评论 -
脉脉热帖:为啥大厂都热衷于造轮子?
不要问我为啥总关注脉脉,因为脉脉里有真话。今天的话题是:为啥大厂热衷于造轮子?转载 2022-06-27 10:55:20 · 709 阅读 · 0 评论 -
职场必备的30套报表模板,满足95%的报表需求,一键套用无需代码
整天搞些花里胡哨的,这不客户没难倒他,倒是报告让他头秃不已。原创 2022-06-22 10:50:14 · 620 阅读 · 0 评论 -
问EXCEL、Python、BI到底谁才是数据分析中的佼佼者?
针对EXCEL、BI、Python 的越来越激烈的争议本文将会从适用范围、适用人群和优劣势进行对比原创 2022-06-15 10:11:44 · 1944 阅读 · 0 评论 -
比EXCEL更简单高效的工具,还能做动态可视化大屏
在大多数人都还只满足于用EXCEL做数据分析的情况下,有人已经从开始尝试探索更简便、更高效的工具来辅助分析。原创 2022-06-07 10:38:35 · 924 阅读 · 8 评论 -
月薪3W的数据分析师跳槽了,看了他做的企业报表,经理:给少了
报表--成为继数据分析师“取数噩梦”的另一个噩梦。原创 2022-06-01 10:46:00 · 316 阅读 · 0 评论 -
BI项目经理入门指南:用最详细的图解,带你落地企业自助分析项目
作为公司新任的 BI 项目经理,你可能会有这样的疑问:我知道 BI 能为公司带来益处,但我要如何做才能在企业里落地 BI 项目?别急,本文将以某大型软件公司 FinBI 项目经理 Alice 的视角,带你初步了解如何在企业中落地 FineBI 自助分析项目。本篇指南共包括以下 6 部分:1、发起 BI 项目1) 项目前宣导作为项目经理,在项目启动前,需要先与公司高层进行事务的拉通并获得支持,说明我们要开始在公司推动 BI 项目落地了;然后通过调研来了解当前公司急需解决的问题,方便确定后续 BI原创 2022-05-27 10:26:08 · 685 阅读 · 0 评论 -
EXCEL不够用,VBA和Python又太难?那么试试这个工具吧
一个朋友向我求助,他现在每天的工作就是做整理数据,做报表,天天重复性的工作,让他渐渐的怀疑自我。基本的EXCEL他已经基本掌握,对其中的表格、图表、透视图等等也十分熟练,对于工作中涉及到的EXCEL也基本没有什么难度。但他也知道如果仅仅只是满足于此肯定对于他之后的职业发展十分不利。因而想多学些技能,掌握更多的工具譬如VBA、Python等。为此他也在网上看过一些学习攻略,甚至报过一些课程。但这些都是需要有一定的代码基础,作为一个非专业人员且被工作占据着大量时间的他而言,学习这些似乎成本太高,很难坚持下原创 2022-05-11 10:19:22 · 753 阅读 · 3 评论 -
你10点钟还在做报表?套用模板,让你提前下班3小时
最近听到一个朋友向我抱怨,他们是一家主营餐饮的传统公司,已经线下开了好几家门店了,今年还打算再开六家。但是发现随着门店数量的增长,加上现在外卖业务的集中发力,线上线下业务数据无法打通,其传统的运营方式已经不能满足公司业务的增长。尤其是针对每次的周报月报更是让他苦不堪言,熬夜加班已经成了常态化。但真问及在做什么的时候,想了半天最后也自己啥都没干,就是一直在取数,整理,做报表。尤其当领导突然想看某个门店的销售情况或者是运营情况的时候,他又需要查看多个报表导出后,通过EXCEL汇总才能知晓门店的部分情况,有的原创 2022-05-09 10:36:39 · 796 阅读 · 3 评论 -
80%的人都听过数字化系统,却只有20%的人尝试使用,你是哪种人?
今天听朋友跟我提起,今天店里来了个人跟他推荐数字门店系统,他听了挺心动的,这几年在大环境整体下行的情况下,生意越来越不好做,尤其是疫情情况下,更是雪上加霜。但一听数字门店建设成本需要千分之三点八的费用,不由得望而却步了。现在许多餐饮行业愈加品牌化和同质化,大型的餐饮行业开始聚焦转战做小型餐饮和特色餐饮,与特小新企业抢占赛道。愈多的大型餐饮公司开始大力发展数字化运营,专注会员管理与营销,搭建自己的私域流量。然而研究表明,与大型企业相比,我国中小微企业占比全国实有各类市场主体96.8%(该数字来源于艾瑞咨原创 2022-04-29 10:13:42 · 1048 阅读 · 1 评论 -
7份数字化转型资料,全是精品,值得收藏(附下载)
7份数字化转型资料!全是精品,值得收藏!(附下载)7份关于数字化转型的资料都整理好了,需要的文末自取~原创 2022-03-14 17:55:23 · 10111 阅读 · 0 评论 -
最不适合做数据分析的6种性格,看看你占了几个?
我接触很多人3年甚至多年的时间都仅仅停留在入门,但他们自我感觉是资深,仔细想一想以下六类人可能不适合做数据分析。1、不善于思考的其实数据分析的精髓在于思考,无论是出报表、还是做报告,其实都是希望通过这些看似杂乱无章的数据给我们带来一些价值,而这个价值的衡量的出发点其实就是思考,简而言之,就是你要用数据干什么?等有一天你想清楚了这个问题,你的思维也会变得更有逻辑。比如领导让你出一份经营分析报告,那你就要思考,由下往上思考,整体会涉及哪些指标,这些指标背后的含义是什么?这些指标能不能分类?分类的标准是什么转载 2021-11-29 09:12:38 · 745 阅读 · 0 评论 -
「竞品分析报告」不会写?套用这个报告模板,让你不再毫无头绪
相信关注老李的很多粉丝都曾写过竞品分析报告,但从我这么多年当团队leader的经验来看,真正能把竞品分析报告写好的同学很少。很多所谓的“竞品分析报告”,都只停留在“罗列数据”的阶段,看似调研了很多,但仔细看下去,会发现只是堆砌了一堆“无用“信息,根本不能得到任何真正有价值的核心结论。那问题来了,我们要怎样才能把「竞品分析报告」写好,让这份报告真正拥有价值?1、在写报告之前,先想清楚我们为什么要写?在做任何事之前,都要在心里想清楚,我做这件事的目的是什么?这是一个很基础的问题,但很多人往往会懒于思考这原创 2021-11-11 09:25:09 · 979 阅读 · 0 评论 -
一文讲清:数据分析与数据挖掘到底有什么区别?
虽然岗位title里都有数据这两个字,但这是两条不同的发展路线,数据分析走的是管理路线,数据挖掘走的是技术路线。我身边就有年薪10万刀的数据分析师,只会Excel,不存在别的技能,但人家就是有能力把技术问题转变成业务问题,不需要会算法和模型。因为“SQL+Excel+BI工具+PPT”这套组合拳,就能满足工作中的绝大部分需求了,如果你再能用PPT把故事讲漂亮,领导就觉得你很厉害了,你大搞机器学习,神经网络,数据算法,如果超出了领导的认知范围并且没有什么好效果的话,你的背景和你的技术也就没什么价值了。原创 2021-11-09 09:44:37 · 4064 阅读 · 0 评论 -
那些拆中台的CTO,70%被裁了
跟几位行业的CTO/CIO朋友聚会,惊讶地发现有6位朋友已经在最近的一年内履新,离职的原因几乎都跟中台有关。细聊下来发现:近两年唱衰中台的声音不绝于耳,许多企业老板开始对中台战略有所动摇,再加上业务部门把运营压力转嫁到IT部门。在这种情形之下,如果CTO对中台没有坚定的信念,就会选择自废武功–拆中台,导致中台战略的失败,成为“背锅侠”。K哥之前的文章讲过,中台建设已经进入下半场,企业必须根据自身的业务特点,进行中台战略的转型。从行业发展来看,软件定义中台、营销数字化平台、低代码等等,已经成为中台“下转载 2021-11-04 09:34:16 · 333 阅读 · 0 评论 -
为什么我劝90%的人不要转行数据分析?数据岗真没你想的那么香
这几年,只要我身边有想转行,准备全职当数据分析师的朋友,我都会劝他们:不要因为数据分析被炒的火热,就一拍脑袋决定放弃现在的工作,从零开始学数据分析。数据分析其实和语言一样,本质上只是一种技能,必须同时擅长其他专业领域知识(比如你是财务、产品、人力,把自己专业领域知识+数据分析技能结合起来),才能够走得长远。如果现在盲目进入数据分析领域,当数据分析师,只会是从一个坑爬上来,然后换个姿势再掉入另外一个坑…为什么说不要再轻易转行数据分析?首先,先让我们来全面拆解一下国内数据分析师的主要工作。我把国内大原创 2021-10-29 09:39:18 · 5866 阅读 · 4 评论