
改进小波阈值去噪
文章平均质量分 65
MATLAB科研小白
信号处理方向博士研究生专注于信号去噪、信号分离等研究;可接数字信号处理实验、工程信号的处理(去噪、分离、预测等)。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文关键代码复现:基于ZOA优化VMD-IAWT岩石声发射信号降噪算法
岩石声发射信号作为表征岩体内部损伤演化的关键载体,其降噪处理面临三大挑战:(1)非平稳特性:脆性破裂产生的AE信号具有宽频带(10-500kHz)、突发瞬态特性,传统傅里叶变换与小波基选择缺乏自适应能力;(2)模态混叠:经验模态分解(EMD)类方法在处理多组分信号时易产生虚假模态,导致有效IMF分量误判率超过35%;(3)参数敏感性:VMD算法的分解效果高度依赖K与α参数,人工经验调参在复杂岩性场景下泛化性不足。原创 2025-03-17 21:17:25 · 897 阅读 · 0 评论 -
改进小波阈值去噪(六)
本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。试验结果表明,改进阈值函数图像去噪方法较之现有方法具有更小的均方误差、更高的峰值信噪比、更高的结构相似性和更小的梯度幅值相似度偏差,去噪效果更优.性质良好的小波阈值去噪方法在图像去噪领域中应用十分广泛.的个人公众号(即文章下方二维码),并回复。MATLAB科研小白。原创 2024-12-06 21:15:26 · 393 阅读 · 0 评论 -
改进小波阈值去噪(五)
小波软阈值函数和硬阈值函数在去噪中已经有很多应用,然而硬阈值函数在阈值点处不连续以及软阈值函数的恒定误差问题仍然会对去噪效果产生一些影响。因此笔者在前人的研究的基础上,设计了一种新的阈值函数,综合了软阈值 与硬阈值函数的特点。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。地震资料通常包含大量噪声,为了有效去除噪声,提高地震信号的信噪比,这里提出一种联合变分模态分解(VMD)与改进小波阈值去噪的方法。的个人公众号,并回复。原创 2024-12-06 21:09:31 · 723 阅读 · 0 评论 -
改进小波阈值去噪(四)
考虑软、硬阈值函数为奇函数,结合上述两个 提出的阈值函数思想,这里提出一种基于指数函数 的改进方法,并设置以绝对值"的阈值为界采用不 同底数的指数,指数函数是一种基本的初等函数, 定义域中函数图形都是下凸,通过不断的调整指数 的底数和自变量形式,是为了调整适应不同层数的 阈值函数,这样能更好的对每层带噪信号小波系数 做去噪处理,极大的提高了去噪的效果。,并采用粒子群优化算法寻找改进阈值函数在某一背景噪声环境中的最优参数值,将改进的小波阈值函数与贝叶斯阈值方法相结合,重构处理后得到最优小波系数的语音信号。原创 2024-11-23 22:30:37 · 433 阅读 · 0 评论 -
改进小波阈值去噪(三)
ECG信号是微弱的电信号,在实际生活中,ECG信号的采集过程容易受环境、仪器等其他外部因素的影响,这些因素会影响心电信号P波和Q波等低频部分的采集。所以,降低ECG信号中的噪声显得尤其重要。原创 2024-11-23 22:26:15 · 242 阅读 · 0 评论 -
改进小波阈值去噪(二)
小波阈值降噪是一种广泛使用的信号处理技术,其核心思想是通过小波变换将原始信号分解为多个不同尺度的分量,然后对每个分量进行阈值处理,将低于某个阈值的分量置为零,从而去除信号中的噪声。小波阈值降噪是一种广泛使用的信号处理技术,其核心思想是通过小波变换将原始信号分解为多个不同尺度的分量,然后对每个分量进行阈值处理,将低于某个阈值的分量置为零,从而去除信号中的噪声。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。MATLAB科研小白。原创 2024-11-23 21:01:19 · 387 阅读 · 0 评论 -
改进小波阈值去噪(一)
因此,在实际应用中,需要根据信号的特点和降噪需求进行灵活选择和调整。小波阈值降噪是一种广泛使用的信号处理技术,其核心思想是通过小波变换将原始信号分解为多个不同尺度的分量,然后对每个分量进行阈值处理,将低于某个阈值的分量置为零,从而去除信号中的噪声。在具体应用中,阈值的选择至关重要,为了克服硬、软阈值在信号消噪中存在的不足,本文对软阈值函数进行了改进。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。图1改进后软阈值函数。原创 2024-11-22 16:59:24 · 1065 阅读 · 0 评论