pip No space left on device

当使用pip安装Python包时遇到错误,可以通过设置环境变量TMPDIR为一个较大空间的目录来解决。例如,将$HOME/tmp改为一个足够大的路径,然后重新尝试pip install包名,问题通常可以得到解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pip安装报错,加个环境变量即可,$HOME/tmp改为空间较大的目录

export TMPDIR=$HOME/tmp

然后再 pip install 包名

### torch 下载失败 No space left on device 的解决方案 当尝试在 PyCharm 中安装 `torch` 时,如果出现错误 `"OSError: [Errno 28] No space left on device"`,这通常表明磁盘空间不足。尽管可能目标安装路径有足够的空间,但在某些情况下,临时文件或缓存目录可能会占用过多的资源[^3]。 以下是几种有效的解决方法: #### 方法一:释放 C 盘或其他主要分区的空间 许多用户的开发环境默认会将临时文件存储在系统驱动器上(通常是 C 盘)。因此,即使其他磁盘有充足的空间,C 盘空间不足仍可能导致此问题。可以通过以下方式增加可用空间: - 删除不必要的程序和大文件。 - 清理 `%TEMP%` 和 `%TMP%` 文件夹中的临时文件。 - 使用磁盘清理工具清除无用数据。 完成上述操作后,重新运行安装命令即可解决问题。 #### 方法二:更改 pip 缓存路径 Pip 默认会在用户主目录下的 `.cache/pip` 或者系统的临时文件夹中创建缓存文件。如果这些位置的空间有限,则可以手动设置新的缓存路径。具体做法如下: ```bash export TMPDIR=D:/temp/ pip install --cache-dir D:/pip_cache/ torch torchvision torchaudio ``` 通过这种方式,可以让 Pip 将其工作过程中产生的中间文件保存到具有更多剩余容量的位置,从而避免因磁盘满而导致的错误[^4]。 #### 方法三:调整 Docker 容器内的存储配置 (适用于基于容器部署的情况) 如果是利用 Docker 来构建机器学习模型训练环境的话,那么还需要注意宿主机分配给容器的实际物理硬盘大小是否合理。一旦超出限额就会触发类似的异常提示:“Error response from daemon: no space left on device.” 此类情况可通过编辑 docker-compose.yml 文件或者直接执行带有适当参数选项的 `docker run` 命令来修正[^2]: ```yaml version: '3' services: app: image: nvidia/cuda:11.0-base-ubuntu20.04 volumes: - ./data:/workspace/data tmpfs: - /tmp ``` 这里我们新增了一个名为 `/tmp` 的内存映射区域用于缓解 I/O 性能瓶颈以及减少持久化写入次数带来的额外开销。 #### 方法四:绕过本地编译过程 有时即便解决了初始阶段的数据交换需求之后仍然无法顺利完成整个流程是因为部分依赖项需要被源码形式重新构建出来再链接起来形成最终产物。对于这种情况建议采用预编译好的 whl 轮子代替标准 pypi 发布版本来进行快速导入处理: ```python import os os.system('pip install https://download.pytorch.org/whl/cpu/torch-1.9.0%2Bcpu-cp38-cp38-win_amd64.whl') ``` 以上就是针对 “No space left on device” 错误的各种应对策略总结说明文档内容结束。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值