一文搞懂考研数列极限问题(概念/计算/证明)史上最强/最全总结

本文深入浅出地介绍了数列极限的概念、计算方法及证明策略,涵盖数列定义、极限计算、收敛性判断及实际应用。通过对不同类型的数列极限问题的分析,如等差、等比数列、定积分定义和级数求和,揭示了数列极限的计算技巧和证明思路,旨在帮助读者理解和掌握这一核心数学概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不管本科高数还是考研数学,数列极限问题,看这一篇文章管够,看完还不会做你来找我!

数列极限,是数列和极限两个充满不确定性的概念相混合,容易让人产生摸不着头脑,看到题目就害怕的感觉,本篇文章就按以下目录对这块儿重难点拨云见日,内容循序渐进,越往后越精彩,大家可以自行感受一下!

01 什么是数列
02 数列的极限
03 数列极限的计算(三种类型)
04数列相关证明题(两种类型)

01 什么是数列?(掌握难度:★)

从字面意思就可以看出来:数列数列,就是将数排成队列。详细点来说,就是将一堆数按照某种规律排成一排,p.s.类似军训,教官让我们按照从矮到高(某种规律)排成一排。
在这里插入图片描述
这时,有个数在开小差,教官就开始点名了。还记得我们当时军训时教官是怎么点名的么?

“第m排第n列,请出列”——这耳熟能详的语句。

由于我们的数只有一列,所以我们就变成了,“第n个数请出列”。为了描述方便我们用符号 xnx_{n}xn 表示,含义为第n个数,于是就有 x1=12,x4=116,x5=132x_{1}=\frac{1}{2} , x_{4}=\frac{1}{16} , x_{5}=\frac{1}{32}x1=21x4=161x5=321。如果可以用某个含n的式子来表示 xnx_{n}xn ,那么这个式子就叫做这个数列的通项公式,例如本文举例的数列,它的通项公式就是: xn=12nx_{n}=\frac{1}{2^{n}}xn=2n1 。有了它,我们就可以快速get这一列数中的每一个数,是不是很方便。

但是,人总是贪心的。所以一定会有人问:“你不是说每一项你都知道么?那么第无穷项是多少呢?”这个时候就涉及到了数列的极限。

02 数列的极限(掌握难度:★★)

针对刚刚的问题——数列{ xnx_{n}xn }的“无穷项”是多少?即当 n→∞n\rightarrow\inftyn 时, xnx_{n}xn 趋近于多少。可见这是一个极限问题,用数学式来表示:

lim⁡n→∞xn=?\lim_{n \rightarrow \infty}{x_{n}}=?limnxn=?

上式的结果,有些是可预测的(可计算出结果),有些是不可预测的(结果不确定),如下:

例如:
(1) (−1)n:−1,1,−1,1,−1,1……{ (-1)^{n} }: -1,1,-1,1,-1,1……(1)n1,1,1,1,1,1……

(2) ln(n):ln1,ln2,ln3,……{ { ln(n) } } : ln1,ln2,ln3,……ln(n):ln1,ln2,ln3……

(3) 12n:12,14,18,116……{\frac{1}{2^{n}} } : \frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16}……2n1214181161……

数列(1),在-1和1间摇摆不定,"第无穷项"鬼知道是1还是-1,因此极限不存在;

数列(2),随n增大, xnx_{n}xn 也无限制地增大,增大到无穷时,无法用一个具体的数来表示,其极限也不存在。对于数列(1)和(2),我们称其为发散数列,或称这个数列是发散的。

数列(3),随n增大,每一项的分母都会无限制的增大,进而每一项会越来越小,最终 n→∞,xn→0(1∞)n\rightarrow \infty ,x_{n}\rightarrow0(\frac{1}{\infty})n,xn0(1) ,所以此时我们可以预测在“第无穷项”处,数列的值趋近于0,这个时候我们也称数列(3)收敛。

所以可知,当 lim⁡n→∞xn=A\lim_{n \rightarrow \infty}{x_{n}}=Alimnxn=A 的时候,数列的“第无穷项”我们是可以预测出来的,此时这个数列 { xn}\left\{ x_{n} \right\}{ xn} 也是收敛的。最终得到下面的关系:

{ xn}收敛↔lim⁡n→∞xn存在↔lim⁡n→∞xn=A\left\{ x_{n} \right\}收敛\leftrightarrow\lim_{n \rightarrow \infty}{x_{n}}存在\leftrightarrow\lim_{n\rightarrow \infty}{x_{n}}=A{ xn}收敛limnxn存在limnxn=A

极限趋近的数学表达式: n→∞,xn→An\rightarrow \infty, x_{n}\rightarrow AnxnA ,用大白话讲就是:当n趋近无穷大时, xnx_{n}xn 与A的距离越来越近。而衡量两个数的距离远近,用绝对值来表示,就是 ∣xn−A∣\left| x_{n}-A \right|xnA 。所以该语句套上数学的外衣就是 n→∞n\rightarrow\inftyn∣xn−A∣→0\left| x_{n}-A \right|\rightarrow0x

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值