对连续数值进行指定方式离散化,计算分布,用cut函数

本文通过使用Python的pandas库中的cut函数将一组年龄数据映射到定义好的区间内,并统计了每个区间的出现频次。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ages = [20,22,25,27,21,23,37,31,61,45,41,32]
bins = [18,25,35,60,100]
#用的是cut函数
cats = pd.cut(ages,bins)
print(pd.value_counts(cats))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值