1 总结
1.1 为什么转移数组是二维而不是一维?
一般我们都知道给定一个字符串s,当我们固定以当前索引i为子串的结尾时,则这种固定方法一共有n种,假设我们称这N个子串为结尾子串;
一般字符串之间的动态规划涉及到两个字符串,且涉及到S的结尾子串和T结尾子串的转换问题,那么两个字符串的所有结尾子串一共有n^2级别的转换组合,且长度更大的结尾子串之间的转换一般会利用到短串之间的转换数值。所以这个时候我们定义的dp的长度是二维的而不是一维
1.2 dp[i][j]有哪几种表达意思?
1 我在1.1中提到的这种,结尾子串i(S中以i结尾的子串)和结尾子串j,比如LC1143. 最长公共子序列, LC72. 编辑距离,LC97. 交错字符串
2 表示一个字符串中的子串区间,经典题目和回文串相关,比如 LC5. 最长回文子串, 这是字节常考题目
2 两个字符串之间的dp
2.1 LC1143. 最长公共子序列
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length(), n = text2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
char c1 = text1.charAt(i - 1);
for (int j = 1; j <= n; j++) {
char c2 = text2.charAt(j - 1);
if (c1 == c2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m][n];
}
}
作者:力扣官方题解
链接:https://leetcode.cn/problems/longest-common-subsequence/solutions/696763