什么是似然函数

似然函数(Likelihood Function)是统计学中用于估计模型参数的一种函数。它表示在给定模型参数的情况下,观测数据出现的概率。与概率密度函数不同,似然函数把观测数据视为固定的,并把模型参数视为变量。

似然函数的定义

在这里插入图片描述

用途

  1. 最大似然估计(MLE)

    • 最大似然估计是寻找能够最大化似然函数的参数 ( \theta ) 的方法,即找到最有可能产生观测数据的参数值。
    • 通过求解似然函数的最大值,可以得到模型参数的估计值。
  2. 评估模型

    • 似然函数可以用来比较不同模型在解释数据上的优劣。似然值越大,模型解释数据的效果越好。

示例

在这里插入图片描述

总结

似然函数是一个关于模型参数的函数,它描述了在给定参数下,数据出现的可能性。通过最大化似然函数,可以估计出最符合观测数据的模型参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值