似然函数(Likelihood Function)是统计学中用于估计模型参数的一种函数。它表示在给定模型参数的情况下,观测数据出现的概率。与概率密度函数不同,似然函数把观测数据视为固定的,并把模型参数视为变量。
似然函数的定义
用途
-
最大似然估计(MLE):
- 最大似然估计是寻找能够最大化似然函数的参数 ( \theta ) 的方法,即找到最有可能产生观测数据的参数值。
- 通过求解似然函数的最大值,可以得到模型参数的估计值。
-
评估模型:
- 似然函数可以用来比较不同模型在解释数据上的优劣。似然值越大,模型解释数据的效果越好。
示例
总结
似然函数是一个关于模型参数的函数,它描述了在给定参数下,数据出现的可能性。通过最大化似然函数,可以估计出最符合观测数据的模型参数。