一、tf.global_variables_initializer()
tf.global_variables_initializer()添加节点用于初始化全局变量(GraphKeys.GLOBAL_VARIABLES)。返回一个初始化所有全局变量的操作(Op)。在你构建完整个模型并在会话中加载模型后,运行这个节点。
能够将所有的变量一步到位的初始化,非常的方便。通过feed_dict, 你也可以将指定的列表传递给它,只初始化列表中的变量。
示例代码如下:
sess.run(tf.global_variables_initializer(),
feed_dict={
learning_rate_dis: learning_rate_val_dis,
adam_beta1_d_tf: adam_beta1_d,
learning_rate_proj: learning_rate_val_proj,
lambda_ratio_tf: lambda_ratio,
lambda_l2_tf: lambda_l2,
lambda_latent_tf: lambda_latent,
lambda_img_tf: lambda_img,
lambda_de_tf: lambda_de,
adam_beta1_g_tf: adam_beta1_g,
})
# learning_rate_dis为设置的变量,learning_rate_val_dis为我设置的具体的值。后续同理
二、tf.local_variables_initializer()
tf.local_variables_initializer()返回一个初始化所有局部变量的操作(Op)。初始化局部变量(GraphKeys.LOCAL_VARIABLE
)。