首先需要对CNN网络理解,如果还不清楚卷积神经网络的可以去看,这里不做介绍https://blog.csdn.net/v_JULY_v/article/details/51812459 大神的超详细解析!
https://blog.csdn.net/sinat_42239797/article/details/90646935主要介绍的是各层的计算及原理
卷积层:nn.Conv2d(in_channels,out_channels,kernel_size,stride,padding)
表中后面有些参数不常用,主要是前三个的设置。
这里说一下计算:
池化层:nn.MaxPool2d()
一般来说会把池化窗口大小设为2。
下面给出完整代码的一个例子:
"""
作者:Troublemaker
功能:
版本:
日期:2020/4/5 19:57
脚本:cnn.py
"""
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
torch.manual_seed(1)
# 设置超参数
epoches = 2
batch_size = 50
learning_rate = 0.001
# 搭建CNN
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__() # 继承__init__功能
## 第一层卷积
self.conv1 = nn.Sequential(
# 输入[1,28,28]
nn.Conv2d(
in_channels=1, # 输入图片的高度
out_channels=16, # 输出图片的高度
kernel_size=5, # 5x5的卷积核,相当于过滤器
stride=1, # 卷积核在图上滑动,每隔一个扫一次
padding=2, # 给图外边补上0
),
# 经过卷积层 输出[16,28,28] 传入池化层
nn.ReLU(),
nn.MaxPool2d(kernel_size=2