PyTorch搭建卷积神经网络CNN实现MNIST手写数字识别(附代码)

本文通过PyTorch构建卷积神经网络(CNN)来识别MNIST手写数字,介绍了nn.Conv2d和nn.MaxPool2d的使用,并提供了完整代码。虽然不深入解释CNN原理,但给出了详细的网络层计算说明。代码运行无需额外参数初始化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先需要对CNN网络理解,如果还不清楚卷积神经网络的可以去看,这里不做介绍https://blog.csdn.net/v_JULY_v/article/details/51812459 大神的超详细解析!
https://blog.csdn.net/sinat_42239797/article/details/90646935主要介绍的是各层的计算及原理

卷积层:nn.Conv2d(in_channels,out_channels,kernel_size,stride,padding)
 在这里插入图片描述
表中后面有些参数不常用,主要是前三个的设置。
这里说一下计算:
在这里插入图片描述
池化层:nn.MaxPool2d()

在这里插入图片描述
一般来说会把池化窗口大小设为2。

下面给出完整代码的一个例子:

"""
    作者:Troublemaker
    功能:
    版本:
    日期:2020/4/5 19:57
    脚本:cnn.py
"""
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt

torch.manual_seed(1)
# 设置超参数
epoches = 2
batch_size = 50
learning_rate = 0.001

# 搭建CNN
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()   # 继承__init__功能
        ## 第一层卷积
        self.conv1 = nn.Sequential(
            # 输入[1,28,28]
            nn.Conv2d(
                in_channels=1,    # 输入图片的高度
                out_channels=16,  # 输出图片的高度
                kernel_size=5,    # 5x5的卷积核,相当于过滤器
                stride=1,         # 卷积核在图上滑动,每隔一个扫一次
                padding=2,        # 给图外边补上0
            ),
            # 经过卷积层 输出[16,28,28] 传入池化层
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值