题目
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。
题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请 不要使用除法,且在 O(n) 时间复杂度内完成此题。
示例 1:
输入: nums = [1,2,3,4]
输出: [24,12,8,6]
示例 2:
输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]
提示:
2 <= nums.length <= 105
-30 <= nums[i] <= 30
输入 保证 数组 answer[i] 在 32 位 整数范围内
进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组 不被视为 额外空间。)
思路
题目是求当前数组位置前缀元素和后缀元素的乘积(不包含当前元素)
因为又要在O(1)的空间复杂度完成,所以只能在每次修改时,只修改当前位置元素的值
我们可以先求nums[i]左边所有元素的乘积放到ans[i]数组中
,再去求num[i]右边所有元素的乘积temp 同时 乘以之前求到的左边所有元素的乘积ans[i]
,最终这ans[i]便是要求值
还有一个边界值,即遍历的第一个元素,其左或右的乘积为1
计算左乘积时,从左往右遍历
,其初始值ans[0]为1计算右乘积时,从右往左遍历
,其初始值ans[nums.length-1]为1
可以通过下面两个举例看出来,如下
原数组: [1 2 3 4]
左部分的乘积: 1 1 1*2 1*2*3
右部分的乘积: 2*3*4 3*4 4 1
结果: 1*2*3*4 1*3*4 1*2*4 1*2*3*1
原数组: [ 2 3 4 5]
左部分的乘积: 1 1*2 1*2*3 1*2*3*4
右部分的乘积: 1*3*4*5 1*4*5 1*5 1
结果: 1*3*4*5 1*2*4*5 1*2*3*5 1*2*3*4
当然,如果你想先计算右边,再计算左边也是可以的,注意边界条件即可
代码
class Solution {
public int[] productExceptSelf(int[] nums) {
int len = nums.length;
int[] ans = new int[len];
ans[0] = 1;
for (int i = 1; i < len; i++) {
ans[i] = ans[i - 1] * nums[i - 1];
}
int temp = 1;
for (int i = len - 2; i >= 0; i--) {
temp *= nums[i + 1];
ans[i] *= temp;
}
return ans;
}
}