(数组)238. 除自身以外数组的乘积

题目

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。

请 不要使用除法,且在 O(n) 时间复杂度内完成此题。

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

提示:

2 <= nums.length <= 105
-30 <= nums[i] <= 30
输入 保证 数组 answer[i] 在 32 位 整数范围内

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组 不被视为 额外空间。)

思路

题目是求当前数组位置前缀元素和后缀元素的乘积(不包含当前元素)

因为又要在O(1)的空间复杂度完成,所以只能在每次修改时,只修改当前位置元素的值

我们可以先求nums[i]左边所有元素的乘积放到ans[i]数组中,再去求num[i]右边所有元素的乘积temp 同时 乘以之前求到的左边所有元素的乘积ans[i],最终这ans[i]便是要求值

还有一个边界值,即遍历的第一个元素,其左或右的乘积为1

  • 计算左乘积时,从左往右遍历,其初始值ans[0]为1
  • 计算右乘积时,从右往左遍历,其初始值ans[nums.length-1]为1

可以通过下面两个举例看出来,如下

原数组:       [1       2       3       4]
左部分的乘积:   1       1      1*2    1*2*3
右部分的乘积: 2*3*4    3*4      4      1
结果:        1*2*3*4  1*3*4   1*2*4  1*2*3*1

原数组:       [ 2       3       4       5]
左部分的乘积:   1       1*2      1*2*3    1*2*3*4
右部分的乘积: 1*3*4*5    1*4*5     1*5      1
结果:        1*3*4*5  1*2*4*5   1*2*3*5  1*2*3*4

当然,如果你想先计算右边,再计算左边也是可以的,注意边界条件即可

代码


class Solution {
    public int[] productExceptSelf(int[] nums) {
        int len = nums.length;
        int[] ans = new int[len];
        ans[0] = 1;
        for (int i = 1; i < len; i++) {
            ans[i] = ans[i - 1] * nums[i - 1];
        }
        int temp = 1;
        for (int i = len - 2; i >= 0; i--) {
            temp *= nums[i + 1];
            ans[i] *= temp;
        }
        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

?abc!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值