二分类Logistic回归模型

本文详细介绍了二分类Logistic回归模型,包括Logit变换、Logistic函数及其与列联表、最小二乘法的区别。Logistic回归通过Logit变换解决了因变量取值受限的问题,模型用于描述在自变量影响下,二分类变量发生的概率。建模步骤包括设置指标变量、列出回归方程、估计系数、模型检验以及预测控制。并提及了MATLAB在实现Logistic回归中的应用。

 Logistic回归属于概率型的非线性回归,分为二分类多分类的回归模型。这里只讲二分类。

  对于二分类的Logistic回归,因变量y只有“是、否”两个取值,记为1和0。这种值为0/1的二值品质型变量,我们称其为二分类变量

  假设在自变量$x_{1}, x_{2}, \cdots, x_{p}$作用下,y取“是”的概率是p,则取“否”的概率是1-p,研究的是当y取“是”发生的模率p与自变量$x_{1}, x_{2}, \cdots, x_{p}$的关系。

Logistic回归模型

①Logit变

  Logit 变换以前用于人口学领域,1970年被Cox引入来解决曲线直线化问题。

  通常把某种结果出现的概率与不出现的概率之比称为称为事件的优势比odds,即假设在p个独立自变量$x_{1}, x_{2}, \cdots, x_{p}$作用下,记y取1的概率是$p=P(y=1 | X)$,取0概率是$1-p$,取1和取0的概率之比为$\frac{p}{1-p}$。Logit变换即取对数:$$\lambda  = \ln ({\rm{ odds }}) = \ln \frac{p}{ {1 - p}}$$

②Logistic函数

  Logistic中文意思为“逻辑”,但是这里,并不是逻辑的意思,而是通过logit变换来命名的。

  二元logistic回归是指因变量为二分类变量的回归分析,目标概率的取值会在0~1之间,但是回归方程的因变量取值却落在实数集当中,这个是不能

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值