
python时间序列分析
文章平均质量分 95
时间序列分析包括使用一系列数学工具的过程,用于研究时间序列数据,以了解发生了什么,何时以及为什么发生,以及未来可能发生的情况。本专栏将介绍使用python处理时间序列数据的代码。
_乐多_
记录python数据处理、cesium、vue网页开发、机器学习、深度学习、时间序列分析算法的笔记。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
处理时间序列数据中缺失值的 4 种技术
本文将讨论 4 种可用于估算时间序列数据集中缺失值的技术。最后观测值前向填充(LOCF)、下一个观测值后向填充(NOCB)、滚动统计、插值。原创 2023-07-21 11:00:48 · 7231 阅读 · 1 评论 -
使用 Facebook Prophet 模型提高时间序列预测性能
在本文中,我们将讨论并实施如何使用Facebook Prophet模型的特征来提高监督式时间序列模型的性能。即使在加入tsfresh和外部特征后,有时候时间序列模型仍然无法达到业务预期的预测结果。原创 2023-07-21 10:38:58 · 416 阅读 · 1 评论 -
每位数据科学家应该了解的5种异常点(变化点)检测算法
本文将讨论并实施5种异常点(突变点)检测技术,并对它们的性能进行基准测试。原创 2023-07-21 10:17:58 · 9777 阅读 · 2 评论