遥感植被指数(Vegetation Index) 是地理信息分析中最常用、也最基础的指标工具。它就像一副专门“看绿意”的眼镜,通过不同波段的组合,让我们“看见”肉眼难以识别的地表植被状况。
而你或许早就听说过 NDVI,但真正了解它的优势和局限吗?你知道还有 EVI、SAVI、GNDVI 这些在不同场景下表现更好的“专业选手”吗?
今天,我们就用通俗易懂的语言,带你一次掌握这 4 大主流植被指数的计算原理、优缺点、适用场景,并附上 Google Earth Engine 的实操代码和导出方法!🌱
🌱1. NDVI:最经典的“绿意参考线”
NDVI(Normalized Difference Vegetation Index),是我们最常用的植被指数,被广泛用于全球绿化监测、生态评估、干旱研究等。
📌 波段组合:近红外(NIR)与红光(RED)
📌 原理:
绿色植被对红光强烈吸收,对近红外强烈反射,所以用 (NIR - RED) / (NIR + RED)
就可以很好地衡量绿意强弱。
✅ 优点:
-
简单、直观
-
应用广泛,研究文献丰富
⚠️ 缺点:
-
植被密度过高时容易“饱和”,无法分辨更绿的区域
-
易受土壤、水体、云等干扰
🎯 适用场景:
城市绿化评估、大范围生态监测、基础遥感分析
🌳2. EVI:高密度森林的增强型专家
EVI(Enhanced Vegetation Index) 是 NDVI 的“升级版”,专为密集森林和高绿植覆盖区域设计。
📌 波段组合:近红外(NIR)、红光(RED)、蓝光(BLUE)
📌 原理:
引入蓝光波段,用于校正大气散射,同时调整了红光的权重,让 NIR 与 RED 的差异更加突出。
✅ 优点:
-
更灵敏地区分高密度植被
-
大气抗扰能力更强,不易饱和
⚠️ 缺点:
-
计算复杂度稍高
-
对蓝光波段质量依赖较大
🎯 适用场景:
热带雨林、北方林区、森林生物量研究
🏜️3. SAVI:干旱半干旱地区的“稳压器”
SAVI(Soil-Adjusted Vegetation Index) 是为干旱区而生的“土壤干扰抑制器”。
📌 波段组合:NIR、RED + 一个土壤调节系数 L
📌 原理:
通过引入 L(一般取值 0.5),对 NDVI 进行修正,有效抑制土壤背景亮度的干扰。
✅ 优点:
-
在土壤裸露区效果更稳健
-
抵消“伪绿”信号
⚠️ 缺点:
-
L 值需要经验设置
-
不适用于高植被密度区域
🎯 适用场景:
干旱区、荒漠边缘、草地、沙地、退化生态研究
🌾4. GNDVI:精准农业里的“氮感专家”
GNDVI(Green NDVI) 是 NDVI 的“绿光变体”,特别关注植物叶绿素和养分状况。
📌 波段组合:近红外(NIR)和绿光(GREEN)
📌 原理:
植物对绿光的吸收与其叶绿素和氮素浓度关系密切,因此 GNDVI 更能反映作物健康。
✅ 优点:
-
对作物氮含量、叶绿素变化非常敏感
-
更适合作物生长状态监控
⚠️ 缺点:
-
对阴影和水体敏感
-
非农业地区优势不明显
🎯 适用场景:
小麦、玉米、水稻等农作物健康监测、精准农业决策
🌍📊实战:一行代码同时生成 NDVI、EVI、SAVI、GNDVI!
使用 Google Earth Engine(GEE),我们可以一次性计算并可视化所有这些指数,还可以导出到 Google Drive:
#部分代码需源码。后台私信“3”
var s2 = ee.ImageCollection("COPERNICUS/S2_SR")
.filterBounds(ee.Geometry.Rectangle([102.5, 24.8, 103.2, 25.2]))
.filterDate('2021-05-01', '2021-08-31')
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 10))
.median();
var nir = s2.select('B8');
var red = s2.select('B4');
var green = s2.select('B3');
var blue = s2.select('B2');
var ndvi = nir.subtract(red).divide(nir.add(red)).rename('NDVI');
var evi = s2.expression('2.5 * ((NIR - RED)/(NIR + 6 * RED - 7.5 * BLUE + 1))',
{'NIR': nir, 'RED': red, 'BLUE': blue}).rename('EVI');
var savi = nir.subtract(red).divide(nir.add(red).add(0.5)).multiply(1.5).rename('SAVI');
var gndvi = nir.subtract(green).divide(nir.add(green)).rename('GNDVI');
Export.image.toDrive({
image: allIndices,
description: 'Vegetation_Indices_S2_2021',
folder: 'GEE_exports',
fileNamePrefix: 'Indices_S2_Kunming',
region: ee.Geometry.Rectangle([102.5, 24.8, 103.2, 25.2]),
scale: 10,
crs: 'EPSG:4326',
maxPixels: 1e13
});
💡导出后你可以在 ArcGIS 或 QGIS 中查看每个指数波段,用于地图制作、统计分析或专题研究。
🎨结语:每一种指数,都是理解地表的“光谱之眼”
NDVI 适合你快速了解绿不绿,EVI 更懂密林,SAVI 善于应对裸露土地,GNDVI 则是农业里的“精密体检”。
不同指数,没有好坏,只有适用与否。选对工具,是我们理解地球的重要一步。
🌏愿你在遥感之路上,看得更清,分析得更准,走得更远!
📬喜欢这类内容?欢迎关注我们,一起探索遥感、生态、地理空间的数字世界!