智能体技术解析:AI Agent快速入门手册

01

引言

你是否见过这样的场景?

  • 一段简单的指令输入,AI就能自动分析数据,撰写报告并发送邮件,像一位隐形助手般完成全套工作,比如最近比较火的AutoGPT,或者国内的Manus;

  • 在ChatGPT中安装“旅行规划”插件,只需要说“帮我订一个去杭州的机票和酒店”,那么他就会自动调用订票网站的接口,实时比价下单....

这些看似科幻的背后,实际上是AI Agent(智能体)技术的爆发。为什么智能体可以像人类一样拆解任务,使用工具呢?初学者该如何上手呢?

基于个人最近半年的学习,对AI Agent做一个简单的学习总结进行分享

02

认识AI Agent:从定义到核心特征

Agent定义

AI Agent(人工智能智能体) 是一种具备自主决策与执行能力的智能系统,它通过感知环境、分析信息、规划任务并调用工具,像人类一样完成复杂目标。其核心特征是

  • 感知:接收多模态输入,比如文字输入,语音输入,图片输入等,提取输入里面的信息

  • 决策:基于大模型(LLM)或者规则引擎进行逻辑推理

  • 行动:调用工具或者API执行操作,比如查询数据库查询机票或者通过电子邮件发送行程单

  • 学习(经验):从历史交互中优化策略

Agent分类

  • 反应式Agent:仅根据当前输入即时应用,无记忆或者规划能力

  • 目标导向Agent:通过规划和推理实现明确目标,比如路径规划,代码生成助手等

  • 效能Agent:基于函数评估行为收益,选择最优解

  • 认知型Agent:具备复杂推理,知识存储和自主学习能力,比如科研助手等

Agent智能度划分标准

目前智能体的发展大部分还停留在L2,正在朝着L3演进

等级

核心特征

技术架构

人类能力参照

L1

规则驱动型

  • 执行单一明确定义的任务

  • 无上下文记忆

  • 规则引擎/检索增强生成(RAG)

  • 无自主协议

未培训的初级人员

L2

学习驱动型

  • 有限领域多步骤执行

  • 支持多轮记忆

  • 监督学习+提示词工程

  • 动态调整参数

具备50%技能的成年人

L3

多模态自主性

  • 跨文本/图像/语音任务

  • 主动建议与任务分解

  • 视觉-语言模型

  • 强化学习规划

具备90%技能的专家

L4

社会协作型

  • 开放环境多智能体写作

  • 长期目标追踪和冲突消解

  • 分布式学习+博弈论

  • 因果推理框架

顶尖专家

Agent vs 传统AI

对比维度

传统AI

AI Agent

交互方式

被动响应,单次问答

主动规则,多轮任务执行

能力范围

仅限于文本/代码生成

可操作显示系统

技术栈

纯LLM

LLM+工具链+记忆机制

典型应用

写作助手

Manus,AutoGPT

03

Agent基础原理

介绍这个问题之前,我们先看看人类是如何做事情的?人们在做事情的时候通常会使用PDCA思维模型

  • Plan:负责制定行动计划

  • Do:根据计划执行

  • Check:检查本轮执行后的效果

  • Action:纠正偏差

举个例子:作为软件工程师,我们在做需求的时候,会先设计好技术方案,然后根据技术方案去实现,后续流转到测试那边进行系统功能测试,根据测试反馈的bug修复问题,调整技术方案,循环上述过程,最终达到需求的上线标准。

其实Agent也是按照类似这样的架构进行设计,Agent核心分为环境感知模块,决策系统和执行器三个部分

接下来我们用一个生活化的例子来进行拆解:假设你让Agent帮你“准备下周去杭州的出差”

看一眼——感知环境,收集信息

就像助理接收到任务时会先问清楚诉求,Agent需要首先能“听懂”你的目标,然后主动收集相关信息,比如:

  • 明确目标:“出差”是核心任务,但是需要更多的细节,比如什么时候出差,待多少天,见多少客户等等?

  • 主动提问:如果信息不全,Agent会追问,“请问你预定的是几点的航班?”

  • 收集数据:会自动采集互联网上面的天气,地址信息

这一步就像你刚接收到任务之后,会先拿出笔记本记录下所有已知条件和未知信息——Agent的“笔记本”就是他的“感知模块”,能接收到文字,语音,甚至图片信息

想一想——拆解任务,制定计划

这里是Agent最聪明/核心的地方,他会把一个复杂的任务拆解成一个个可执行的小步骤,就像我们用思维导图树立工作流程。比如将去成都出差拆解为以下几个流程

这里面涉及到两个关键能力:

  • 规划能力:会优先处理重要任务,考虑到突发情况,如果直达航班太贵,会自动推荐“中转方案+价格对比”

  • 记忆系统:记录当前任务的上下文,保存历史的交互信息,比如用户性格,喜好等等

动动手——调用工具,执行任务

Agent没有自己的手,但是它可以熟练地使用各种“工具”完成操作:

  • 订机票:调用携程/飞猪的API完成订单信息的填写和支付

  • 做PPT:调用Canva API生成演示稿

  • 导航:把客户地址输入高德地图API,生成最优路线推送到你的微信

04

应用场景

  • Microsoft Copilot自动整理邮件、生成日程提醒

  • 科研Agent自动检索文献、生成实验方案(如ChemCrow)

  • 编程Agent辅助debug、优化代码(如GitHub Copilot X)

  • 智能客服Agent处理售后问题,自主发起退款/补发

  • 个性化学习Agent根据学生进度调整教学内容

05

现状和挑战

当前进展

  • 目前Agent多模态能力比较弱,在文本处理方面比较先进,但是图文,视频这类场景还比较局限

  • 国内外互联网大厂都在布局AI Agent,涉及编程,科研,生活等多个方面

  • 从FunctionCall到MCP,再到后面谷歌提出的A2A,目前协议层还未实现统一,各个Agent之间还是存在信息孤岛,无法化零为整,最大化发挥Agent的能力

挑战

  • 可靠性:目前大模型的幻觉还是比较常见,而且受限于上下文的影响,生成的信息不是很可靠

  • 安全性:恶意使用的风险,隐私泄露

  • 伦理问题:Agent受限于训练的数据,天然会受到训练数据中的偏见影响,涉嫌歧视

06

如何上手

  • 产品体验

    • 字节跳动-扣子空间:https://www.coze.cn/

    • 通用型AI Manus:https://manus.im/

  • 个人学习

    • LangChain Agent框架:https://langchain-ai.github.io/langgraph/concepts/why-langgraph/

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值