
图像去噪
文章平均质量分 91
JimmyCM
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文笔记:Efficient Multi-Stage Video Denoising with Recurrent Spatio-Temporal Fusion
这是Huawei Noah‘s Ark Lab在CVPR2021上的文章。他们针对于终端设备算力有限的条件下,提出了一种有效的视频降噪算法EMVD,其主要特点在于通过可学习的可逆变换,将图像的亮度和颜色信息,以及不同的频率信息进行分解,在变换域进行图像降噪处理;使用了三级结构,包括时域融合(temporal fusion)、空域降噪(spatial denoising)、时空精修(spatio-temporal refinement)三个阶段,每级结构都有明确的任务和可解释性;使用很小的参数和计算量原创 2021-07-15 10:47:22 · 3938 阅读 · 1 评论 -
论文笔记:ROBUST AND INTERPRETABLE BLIND IMAGE DENOISING VIA BIAS-FREE CONVOLUTIONAL NEURAL NETWORKS
论文笔记:ROBUST AND INTERPRETABLE BLIND IMAGE DENOISING VIA BIAS-FREE CONVOLUTIONAL NEURAL NETWORKS这是ICLR 2020的一篇文章,单位为纽约大学。其主要讨论了通过将网络结构中的所有加性参数去掉,得到无偏置网络(bias-free network)可以在不同的噪声水平下有更好的泛化性能,即使其只在一个非常小的的噪声水平上做训练。对于无偏置网络来说,每个局部位置都可以将网络权重看做是一个滤波器,其自适应于图像结构和噪原创 2021-07-15 10:04:34 · 1134 阅读 · 1 评论 -
What's new in image denoising - 图像去噪进展
What‘s new in image denoising最近看了不少论文,闲下来对这些文章做一个总结,把握一下这个领域发展的一些小趋势吧。下面总结主要以去噪方法为主,辅助介绍一些图像复原任务中的通用方法。Let’s do it!下面主要从以下几个方面介绍:数据预处理网络结构多任务结合和先验数据预处理RAW vs RGB现在越来越多的去噪方法应用于RAW域。RAW域与RGB域比...原创 2019-05-09 15:25:23 · 6941 阅读 · 10 评论 -
论文笔记:Learning Denoising from Single Noisy Images
Introduction上次看过文章Noise2Noise(简称为N2N吧),其使用noisy-noisy image pairs对网络进行训练,可以达到使用noisy-clean image pairs的效果。但在N2N中,使用的noisy-noisy image pairs要求有相同的图像内容带有不同的噪声,即(s+n,s+n′)(s+n, s+n')(s+n,s+n′),...原创 2019-02-28 20:18:02 · 10076 阅读 · 4 评论 -
VST in Denoising
Introduction经典的图像去噪方法都是将噪声建模为加性高斯白噪声(AWGN),而真实图像的噪声并不严格服从AWGN。比如对于RAW图像来说,其噪声分布服从Poisson-Gaussian分布。因此,我们有两种方法来应对这种差别:根据实际观察到的噪声分布建立新的噪声模型,以此来提出新的去噪方法;将观察到的噪声分布转化为AWGN,用现有的去噪方法处理;VST(variance st...原创 2018-10-25 18:42:08 · 10833 阅读 · 4 评论 -
论文阅读:FFDNet:Toward a Fast and Flexible Solution for CNN based Image Denoising
IntroductionFFDNet是Zhang Kai的一篇承前启后之作,从DnCNN到FFDNet再到CBDNet是一个网络的泛化过程,处理的对象从均匀的高斯噪声变成更加复杂的真实噪声。DnCNN利用Batch Normalization和residual learning可以有效地去除均匀高斯噪声,且对一定噪声水平范围的噪声都有抑制作用。然而真实的噪声并不是均匀的高斯噪声,其是信号依赖的,...原创 2018-09-26 09:43:21 · 17276 阅读 · 4 评论 -
论文阅读:Burst photography for high dynamic range and low-light imaging
IntroductionGoogle HDR+ 技术曾使得Google pixel 2以其单镜头拍照质量超越了众多双摄手机,登顶手机拍照质量排行榜。这篇文章是HDR+初代版本的技术细节的介绍,与其他HDR技术论文相比,其更加注重工程实用化以及整个成像系统,因此也引入了很多工程化的技巧,以求得在手机设备上达到理想效果。 对于手机来说,为了便携化,一般其相机的镜头光圈较小,限制了射入光子的数量,...原创 2018-09-06 11:18:44 · 11665 阅读 · 2 评论 -
论文阅读:An Efficient Statistical Method for Image Noise Level Estimation
Introduction噪声水平估计对于非盲去噪方法是至关重要的,噪声水平估计质量直接影响去噪的质量。这篇文章是2015年ICCV 的一篇文章,针对于加性高斯白噪声,其利用非局部相似块具有低秩性的特性,利用协方差矩阵冗余维度的特征值估计噪声水平,并取得了不错的效果。这篇文章的主要贡献在于 1. 分析了噪声水平和图像patch的协方差矩阵的特征值之间的关系; 2. 提出了一种无参方法在多项式...原创 2018-09-03 12:07:58 · 4321 阅读 · 5 评论 -
论文笔记:Toward Convolutional Blind Denoising of Real Photographs
Introduction这是哈工大与香港理工大Lei Zhang老师课题组合作完成的论文,是今年7月份才在arxiv上放出来。Lei Zhang老师课题组在图像去噪方面一直走在前沿,许多经典工作都是他们提出的,如WNNM、DnCNN等。这一篇也是其在深度图像去噪方面的新的文章。与其前面的工作不同的是,这篇文章主要研究了卷积网络在真实图像上的去噪效果,其主要贡献在于以下几点:提出了...原创 2018-08-25 15:33:52 · 14733 阅读 · 14 评论 -
图像去噪数据集
Introduction目前效果出色的深度去噪方法大都采用监督学习的方法,需要采集输入-输出图像对(noisy/noise-free images pairs)建立训练数据集。数据集的建立是关键的任务。数据集的质量将直接决定去噪结果的质量。如何获取尽量多场景的图像数据,如何获得高质量的参考图像(ground truth),是目前研究的热点。The State of ArtsMe...原创 2018-08-28 14:58:02 · 33324 阅读 · 60 评论 -
论文笔记:Noise2Noise: Learning Image Restoration without Clean Data
Introduction这是ICML2018的一篇论文,其由来自英伟达、阿尔托大学和 MIT 的研究者联合发表。该文章提出了一个很有意思的观点:在某些常见情况下,网络可以学习恢复信号而不用“看”到“干净”的信号,且得到的结果接近或相当于使用“干净”样本进行训练。而这项结论来自于一个简单的统计学上的观察:我们在网络训练中使用的损失函数,其仅仅要求目标信号(ground truth)在某些...原创 2018-07-20 16:28:18 · 20767 阅读 · 11 评论 -
自然图像先验与图像复原
Introduction图像复原是图像处理中最重要的任务之一,其包括图像去噪、去模糊、图像修复、超分辨等, 都是底层视觉中被广泛研究的问题。实际中我们得到的图像往往是退化后的图像(如带噪声图像、模糊图像、被采样的图像等): y=D(x)y=D(x)y=D(x)其中,yyy表示观察到的退化图像,xxx是原始图像,D(∙)D(∙)D(\bullet)是退化函数,往往是未知的,在实际的计算中,...原创 2018-07-28 16:27:17 · 17606 阅读 · 6 评论 -
论文笔记:Learning to See in the Dark
Introduction在极低照度环境下,使用短曝光拍照会存在大量噪声和偏色问题,而使用长曝光拍照会造成图像模糊。文章提出了一种低光照图像质量提升的方法。其利用端到端的全卷积网络代替传统图像后处理链路,可直接将传感器RAW数据处理得到可视化的彩色图像。文章主要贡献在于:提出了一种端到端的方法提升极低光照图像的图像质量,主要解决噪声和偏色问题;建立低光照图像库,以短曝光图像与其对...原创 2018-07-12 22:56:30 · 6276 阅读 · 7 评论 -
论文笔记:Burst Denoising with Kernel Prediction Networks
Burst Denoising with Kernel Prediction NetworksIntroduction这是UC Berkeley与Google Research于CVPR2018发表的一篇多图像去噪论文。其提出了一种CNN网络结构可以预测空间变化的核(kernel),利用得到的每个位置的Kernel对图像进行局部配准和降噪。文章基于真实噪声生成模型对ground tru...原创 2018-07-10 21:39:19 · 10266 阅读 · 15 评论