一、KNN分类在农业智能预测中的主要应用场景
(1) 作物病害早期分类
场景特点:基于叶片图像斑点特征(颜色、形状、纹理)快速判断病害类型(如锈病、霉病等)。
(2) 土壤质量等级划分
输入特征:pH值、有机质含量、重金属浓度等6-8维指标。
调参要点:使用交叉验证选择最优k值,通常k=3~7(避免小样本噪声干扰)。
(3) 农产品品质分拣
应用案例:水果糖度/酸度的近红外光谱数据分类(A级/B级/C级)。
(4) 气候模式识别
场景: 结合历史气象数据(温度、降水、积温),识别当前气候模式是否属于厄尔尼诺年型。
特征工程:需先通过PCA降维(从50+气象指标降至5-8个主成分)。
(5) 产量等级划分
在农产品收获前,需要对产量进行初步预估并划分等级,以便于后续的销售和仓储规划。KNN 分类算法可在此发挥作用。系统收集大量历史数据,包括不同地块的土壤湿度、肥力、光照时长、温度变化、作物品种等环境与种植因素数据,同时记录对应的产量等级(如高产、中产、低产)。
(6) 作物品种分类
场景:基于形态特征(株高、叶面积、穗长等)区分不同品种的小麦/水稻。
(7) 农田地块健康状态评估
输入特征:多光谱卫星影像的NDVI、EVI等5-8个植被指数。
分类规则:
【1】健康(NDVI>0.6)
【2】亚健康(0.4<NDVI≤0.6)
【3】病害(NDVI≤0.4)
二、KNN分类设计
1、作物病害早期分类
(1) 特征变量设计
视觉特征(图像数据):
环境传感特征:
生化特征(实验室检测):
【1】叶片生理指标:
叶绿素含量(SPAD值)
丙二醛(MDA)含量(氧化应激标志物)
【2】微生物组数据:
致病菌相对丰度(16S rRNA测序)
时序动态特征:
【1】病斑扩展速率
【2】多时相植被指数变化
NDVI一周内下降幅度超过15%→早期病害信号
空间分布特征:
【1】聚集指数(Moran's I)
【2】病株在田间的分布均匀度