背包问题,最大利润
这是一个典型的背包问题,应当注意这个每样物品是否可以重复取用。
我们可以绘制dp表格,从子问题下手。恰当的选择子问题。
当只有水可以选择时,背包容量为[1,6]时可以最大多少。
当水,和书都可以选择时,背包最大多少
…
因此,dp表格的行是不同的选择范围,列是不同的背包容量下的最优解。
def bag(self, bag, val, n):
# bag 是东西的大小,val是价值,n是容量
dp = [[0 for i in range(n+1)]for i in range(len(val)+1)]
# 列是容量 行是可拿东西
for i in range(1, len(val)+1):
for j in range(1, n+1):
# 当放不下当前物品时,考虑没有当前物品的最大可能
if bag[i-1] > j:
dp[i][</

本文探讨背包问题中的最大利润策略,通过动态规划建立dp表格解决可重复和不可重复物品的情况。2020.03.28的更新中提到,空间复杂度可进一步压缩,通过倒序迭代解决二维问题,并引入第三个维度处理物品不可重复的情况。
最低0.47元/天 解锁文章
2480

被折叠的 条评论
为什么被折叠?



