《算法图解》背包问题(二维与三维背包问题)

本文探讨背包问题中的最大利润策略,通过动态规划建立dp表格解决可重复和不可重复物品的情况。2020.03.28的更新中提到,空间复杂度可进一步压缩,通过倒序迭代解决二维问题,并引入第三个维度处理物品不可重复的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背包问题,最大利润

在这里插入图片描述这是一个典型的背包问题,应当注意这个每样物品是否可以重复取用。
我们可以绘制dp表格,从子问题下手。恰当的选择子问题。

当只有水可以选择时,背包容量为[1,6]时可以最大多少。
当水,和书都可以选择时,背包最大多少

因此,dp表格的行是不同的选择范围,列是不同的背包容量下的最优解。

    def bag(self, bag, val, n):
    # bag 是东西的大小,val是价值,n是容量
        dp = [[0 for i in range(n+1)]for i in range(len(val)+1)]
        # 列是容量 行是可拿东西
        for i in range(1, len(val)+1):
            for j in range(1, n+1):
            	# 当放不下当前物品时,考虑没有当前物品的最大可能
                if bag[i-1] > j:
                    dp[i][</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值