构造场,C题赛时瞪了俩多小时没瞪出来,猜了几个全WA了,太坐牢了,加训!
A. Final Verdict
题解:
发现最后的结果就是区间和的平均数,直接判一下就行
void solve()
{
int n, x;
cin >> n >> x;
vector<int> a(n + 1);
int sum = 0;
for (int i = 1; i <= n; i++) {
cin >> a[i];
sum += a[i];
}
if (sum % n == 0 && sum / n == x) {
puts("YES");
} else {
puts("NO");
}
}
B. Vicious Labyrinth
题解:
保证总距离最小,那其实就是要保证所有的人最后传送的尽可能离 n 近,或者,传送到 n 点。
这里有一个很自然的想法就是保证 n 传送到 n - 1,然后 n - 1传送到 n,这样就可以贪心地保证最后的结果较优,既然要传走的话,还不如尽量传的近一点。
这样除了 n 和 n - 1 两个点以外的其他点就要保证最后传送 k 次后落点在 n,所以讨论一下奇偶,看能在 n - 1 和n之间传多少次。
void solve()
{
int n, k;
cin >> n >> k;
vector<int> a(n + 1);
if (k & 1) {
for (int i = 1; i <= n - 1; i++) {
a[i] = n;
}
a[n] = n - 1;
}
else {
for (int i = 1; i <= n - 2; i++) {
a[i] = n - 1;
}
a[n - 1] = n;
a[n] = n - 1;
}
for (int i = 1; i <= n; i++) {
cout << a[i] << " \n"[i == n];
}
}
C. Breach of Faith
题解:
构造一个满足条件的数组。
先入为主的一个想法就是枚举哪一半数字是正数,哪一半数字是负数,但这显然不可能,复杂度太高,一定有更简单的构造方式。
这里最大的困难就是如何保证新增加的数字与原有的数组中的每一个数字不重复?
一个很重要的想法就是让这个数字尽可能地大,大于所有b数组中的数字,或者尽可能地小,小于所有b数组中的数字。
后者的想法不太好实现,因为上文也说了,取负的策略有很多种,很难实现,这个下界最小值就很不好搞,但是上界很好搞:这里写一个等式,假设b数组已经从小到大排序,则b[n]最大。
b[n] = X - b[1] + (b[2] - b[n - 1]) + (b[3] - b[n - 2]) …
移项之后就是:
X = b[n] + b[n - 1] + b[n - 2] + … - b[n / 2] - b[n / 2 - 1] - … - b[1];
可以保证构造出来的X这个数字肯定大于 b数组中的每一项,因为正数比负数多一项,而且排序过(自己想一下)
既然已经保证了新增的数字最大,不会重复,那么问题也就解决了。
void solve()
{
int n;
cin >> n;
n *= 2;
vector<int> b(n + 2);
for (int i = 1; i <= n; i++) cin >> b[i];
sort(b.begin() + 1, b.end() - 1);
b[n + 1] = b[n];
int sum = 0;
for (int i = 2; i < n; i++) {
if (i <= n / 2) sum += b[i];
else sum -= b[i];
}
b[n] = b[n + 1] + b[1] - sum;
cout << b[n + 1] << ' ';
for (int i = 1; i <= n / 2; i++) {
if (i == 1) cout << b[n - i + 1] << ' ' << b[i] << ' ';
else cout << b[i] << ' ' << b[n - i + 1] << ' ';
}
cout << endl;
}