Sumsets POJ - 2229(计数dp)

博客介绍了如何使用动态规划方法解决寻找所有2的次幂数之和等于给定数的问题。代码实现中,dp[i]表示数字i的不同分解方案数,通过递推公式更新状态,最终输出dp[n]的值,即为答案。博客内容涉及到算法、动态规划和数值计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

给一个数,是集合的总数和,集合元素只能为2的次幂数,问这样的集合有多少?

题目:

Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:

  1. 1+1+1+1+1+1+1
  2. 1+1+1+1+1+2
  3. 1+1+1+2+2
  4. 1+1+1+4
  5. 1+2+2+2
  6. 1+2+4

Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).

Input

A single line with a single integer, N.

Output

The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7

Sample Output

6

分析:

计数dp,dp[i]定义为i有多少种分解方案,
(1)对一个数 iii,首先如果它是奇数,则它的方案总数与 i−1i-1i1的方案总数相同,因为只需要在 i−1i-1i1的每个分解方案集合里面多一个元素 1即可.
(2)如果它是偶数,则 i/2i/2i/2的每个分解方案的每个数*2即可得到 iii,这样得到的 iii的分解方案是不存在 1的(因为 *2所以至少为 2),因此还要考虑有 1的时候 iii的分解方案有多少种,可以这样想,先忽略一个1,考虑剩下的数任意组合的方法数,也就是 i−1i-1i1的方案数,最后再加上一个 1即可归为有 1的时候i的分解方案数,下面我会作图解答:在这里插入图片描述

dp[i]dp[i]dp[i]=iii &1 ? dp[i−1]:(dp[i−2]+dp[i/2])dp[i-1]:(dp[i-2]+dp[i/2])dp[i1]:(dp[i2]+dp[i/2])%mod ;
初始化 dp[0]=dp[1]=1dp[0]=dp[1]=1dp[0]=dp[1]=1.递推就可以了.

AC模板:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int M=1e6+10;
const int mod=1e9;
typedef long long ll;
int n;
ll dp[M];
int main()
{
    scanf("%d",&n);
    dp[0]=dp[1]=1;
    for(int i=2;i<=n;i++)
        dp[i]=i&1?dp[i-1]:(dp[i-1]+dp[i/2])%mod;
    printf("%lld\n",dp[n]);
    return 0;
}

备战ccpc分站赛ing ,题目分析简略,见谅,转载请注明出处。。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值