1. 引言
Transformer 网络是一种变革性的人工神经网络架构,它能够将输入序列转换为输出序列,其核心在于学习序列中各个组成部分之间的上下文和关系 。
这项技术最初在自然语言处理(NLP)领域取得了巨大成功,但其影响力已扩展到计算机视觉、语音识别等多个领域 。
Transformer 模型通过完全依赖注意力机制来计算输入和输出的表示,而无需使用像循环神经网络(RNN)那样的序列对齐或卷积 。
Transformer 网络是一种变革性的人工神经网络架构,它能够将输入序列转换为输出序列,其核心在于学习序列中各个组成部分之间的上下文和关系 。
这项技术最初在自然语言处理(NLP)领域取得了巨大成功,但其影响力已扩展到计算机视觉、语音识别等多个领域 。
Transformer 模型通过完全依赖注意力机制来计算输入和输出的表示,而无需使用像循环神经网络(RNN)那样的序列对齐或卷积 。