基于超声波的库位重定位算法

本文提出一种结合超声波三角定位算法的垂直车位检测方案,以提高检测精度。通过首次粗定位后,利用边沿算法进行二次精确定位。过程中采用数据滤波等信号处理手段,有效剔除无效信号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


概述

基于超声的垂直车位检测存在许多技术瓶颈,比如超声波的更新频率和探测开角,都是影响检测精度的关键因素。另外由于车辆头部形状多样,没有车辆侧面平整。以及传感器本身性能限制和探测环境的复杂性,很难实现车位一次性精确检测。因此本文提出一种库位检测的思路,结合超声波的三角定位算法,进一步提高超声波车位定位的精度。

过程描述

首先车辆先通过超声波传感器进行第一次停车位检测,确定停车位的大概位置,规划控制算法会控制车辆进入倒车入库状态。在入库的过程中,进行前车车头边沿的重新检测,并通过尾部超声波进行后车右前角的检测。当车辆离后车距离达到30~40cm时,车辆停止。通过后置的短距超声波,使用三角定位算法实现,进行后车边沿数据的采集。等待数据量足够时,一般可以设定200个数据点左右。停止超声数据的推送,开始进行边沿算法的计算,从而实现垂直车位的二次定位。

在这里插入图片描述


信号处理


数据滤波

传感器状态滤波

由于传感器本身会输出一些状态信号,第一步可以先使用传感器输出的状态信号,进行一级数据的滤波。


Level值

超声波的Level值反应了声波的回波强度,因此可以使用回波强度的大小,去滤除一部分无效信号,比如回波为0值数据。这些数据反应了未探测到障碍物,或者是障碍物的特殊结构反射了声波,特殊的材料吸收了声波。
比如某些车型的车头设计有很大的进气栅格,这种结构就会减少反射声波的强度,从而导致强度降低。
在这里插入图片描述
当超声波探测到车辆边沿时,此时由于很多回波反射方向变化,所以传感器接收到的强度变低。
在这里插入图片描述
通过一系列的滤波操作,可以得出以下图形。其中蓝色是滤波前的原始数据,黄色是滤波后的数据。可以从下图看出,通过滤波操作可以滤除一些无效信号点。

在这里插入图片描述


边沿检测

概述

对原始数据进行处理后,可以得到一组有效的超声信号,基于这组数据,可以进行车辆边沿的检测。

距离疏密程度

由于所有的坐标点都已经转化到了地面坐标系下,所以只需要进行x方向的疏密度分析。从下图可知,在车辆边沿处,点比较稀疏,有的地方存在很长一段距离无数据点。这种情况一般是车头处存在镂空的结构,或者声波发生了散射,导致声波强度减小。所以在确定车辆边沿点时,需设置一个疏密距离阀值,当距离值大于阀值时,才认为该点是边界的跳变点。
在这里插入图片描述

数据分布

对于后车的边沿定位,使用的是车辆后方的短距传感器,该传感器使用三角定位原理,确定后车边沿的坐标值。可以从图中看出,图片左侧数据点描绘的是后车的边沿,可以通过数据的分布情况,及集中程度,确定最有可能车辆边沿的值。
在这里插入图片描述
如下图所示,是对上图x轴做了数值分布分析,可以看出,大部分点的x轴坐标都分布于区域5中,所以最后取区域5中的点作为可信的坐标点。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

henry.zhu51

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值