幽灵卷积(Ghost Conv)是一种新颖的卷积操作方法,旨在解决传统卷积神经网络中参数量和计算量过大的问题,尤其适用于资源受限的设备。以下是对幽灵卷积的详细介绍:
核心思想
常规的卷积操作会产生大量的特征图,其中存在一定的冗余信息。幽灵卷积的核心思想是先通过少量的卷积核进行常规卷积操作获得一部分 “固有特征图”,然后对这些固有特征图进行更廉价的线性变换操作,生成更多的 “幽灵特征图”。最后将固有特征图和幽灵特征图进行拼接,得到最终的特征图。
主要步骤
常规卷积:使用少量的卷积核对输入特征图进行卷积操作,这一步的目的是提取输入特征图中的关键信息,生成固有特征图。这部分的计算量相对较小,但能够捕捉到特征图的主要特征。
幽灵生成:对第一步得到的固有特征图进行线性变换操作,生成幽灵特征图。线性变换操作通常使用深度可分离卷积(Depthwise Convolution)等较为简单的操作方式,这些操作的计算成本较低,可以在不增加过多计算量的情况下生成大量的特征图。深度可分离卷积是将卷积操作分为深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)两个步骤,深度卷积负责对每个通道进行单独的卷积操作,逐点卷积则负责对深度卷积的结果进行通道间的组合,从而得到最终的输出特征图。
特征图拼接:将固有特征图和生成的幽灵特征图进行拼接,得到最终的输出特征图。这样既保留了原始特征图的关键信息,又通过幽灵特征图增加了特征的多样性。
优势
降低计算负载:通过使用线性变换从现