管理科学基础知识
数学建模基础知识
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象和简化,建立能近似刻画并解决实际问题的模型的一种强有力的数学手段
- 数学模型:客观世界中的实际事物的一种数学简化
- 数学建模过程:
- 模型准备
- 模型假设
- 模型建立
- 模型求解
- 模型分析
- 模型检验
- 模型应用
- 数学建模的方法
- 直接分析法
- 类比法
- 数据分析法
- 构想法
图论
最小生成树
- 普里姆算法(Prim)
- 克鲁斯卡尔算法(Kruskal)
最短路径
- 单源最短路径
- 每一对顶点之间的最短路径
网络与最大流量
最大流量问题是一个特殊的线性规划问题
总的最大流量是唯一确定的
决策论
决策的分类与模型
- 按照性质的重要性
- 战略决策
- 策略决策
- 执行决策
- 按决策的结果分类
- 程序性决策(可重复)
- 非程序性决策(一次性)
- 按定量和定性
- 定量决策
- 定性决策
- 按决策环境
- 确定型决策
- 风险决策
- 不确定型决策
- 按决策过程的连续性
- 单项决策
- 序列决策
决策模型
- 面向结果
- 面向过程
不确定型决策
决策者对环境情况一无所知,根据主管倾向进行决策
五种准则
- 乐观主义准则
- 悲观主义准则
- 折中主义准则
- 等可能准则
- 后悔值准则
灵敏度分析
关注数据的变化敏感度,并保持原有方案有效
线性规划
线性规划是研究在有限的资源条件下,如何有效地利用这些资源达到预定目标的数学方法
在一组约束条件下,寻找目标函数极值问题
- 图解法
- 关于解的讨论
- 单纯形法
- 线性规划的适用性
动态规划
解决多阶段决策过程问题的一种最优化方法
实质是分治思想和解决冗余