bat批处理 命令

本文介绍批处理的基础知识,包括批处理文件的创建、使用的基本语法、参数传递方式及常用命令等。适合初学者快速入门。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基础语法:
    1.批处理文件是一个“.bat”结尾的文本文件,这个文件的每一行都是一条DOS命令。可以使用任何文本文件编辑工具创建和修改。
    2.批处理是一种简单的程序,可以用 if 和 goto 来控制流程,也可以使用 for 循环。
    3.批处理的编程能力远不如C语言等编程语言,也十分不规范。
    4.每个编写好的批处理文件都相当于一个DOS的外部命令,把它所在的目录放到DOS搜索路径(path)中,即可在任意位置运行。
    5.C:\AUTOEXEC.BAT 是每次系统启动时都会自动运行的,可以将每次启动时都要运行的命令放入该文件中。
    6.大小写不敏感(命令符忽略大小写)
    7.批处理的文件扩展名为 .bat 或 .cmd。
    8.在命令提示下键入批处理文件的名称,或者双击该批处理文件,系统就会调用Cmd.exe来运行该文件。


二、参数:
    1) 系统参数
复制代码
复制代码
       %SystemRoot%   ===    C:\WINDOWS    (%windir% 同样)
       %ProgramFiles% ===    C:\Program Files
       %USERPROFILE%  ===    C:\Documents and Settings\Administrator  (子目录有“桌面”,“开始菜单”,“收藏夹”等)
       %APPDATA%      ===    C:\Documents and Settings\Administrator\Application Data
       %TEMP%         ===    C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp  (%TEM% 同样)
       %APPDATA%      ===    C:\Documents and Settings\Administrator\Application Data
       %OS%           ===    Windows_NT (系统)
       %Path%         ===    %SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem  (原本的设置)
       %HOMEDRIVE%    ===    C:   (系统盘)
       %HOMEPATH%     ===    \Documents and Settings\Administrator

       :: 枚举当前的环境变量
       setlocal enabledelayedexpansion
       FOR /F "usebackq delims==" %%i IN (`set`) DO @echo %%i    !%%i!
复制代码

复制代码

    2) 传递参数给批处理文件
      %[1-9]表示参数,参数是指在运行批处理文件时在文件名后加的以空格(或者Tab)分隔的字符串。
变量可以从%0到%9,%0表示批处理命令本身,其它参数字符串用 %1 到 %9 顺序表示。
复制代码
      Sample:
        call test2.bat "hello" "haha" (执行同目录下的“test2.bat”文件,并输入两个参数)
        在“test2.bat”文件里写:
        echo %1  (打印: "hello")
        echo %2  (打印: "haha")
        echo %0  (打印: test2.bat)
        echo %19 (打印: "hello"9)
复制代码
三、批处理基本命令
0. help 命令
  /? 命令
  语法: 命令 /?
  可显示此命令的帮助信息
  Sample: type /? >>tmp.txt  (把 type 命令的帮助信息写入到tmp.txt文件里)
  Sample: help type  (显示跟“type /?”一样)

1.Echo 命令
  语法: echo [{on|off}] [message]
  ECHO [ON | OFF]   打开回显或关闭回显功能。
  ECHO              显示当前回显设置。
  ECHO [message]    显示信息。
  echo off 表示在此语句后所有运行的命令都不显示命令行本身;默认是on,on时会显示如: C:\文件夹路径>命令行。
  在实际应用中我们会把这条命令和重定向符号( 也称为管道符号,一般用 > >> ^ )结合来实现输入一些命令到特定格式的文件中。
  Sample: echo off
  Sample: echo hello world  (显示出“hello world”)
  Sample: echo Windows Registry Editor Version 5.00 > c:\setupreg.reg (此前还没有 setupreg.reg 这个文件)
  Sample: echo "SourcePath"="D:\\Win2003\\" >> c:\setupreg.reg   (追加内容进 setupreg.reg 这个文件)
2.@ 命令
  表示不显示@后面的命令,(在入侵过程中自然不能让对方看到你使用的命令啦)
  @ 与 echo off 相象,但它是加在每个命令行的最前面,表示运行时不显示这一行的命令行(只能影响当前行)。
  Sample: @echo off  (此语句常用于开头,表示不显示所有的命令行信息,包括此句)
  Sample: @echo please wait a minite...
  Sample: @format X: /q/u/autoset
  (format 这个命令是不可以使用/y这个参数的,可喜的是微软留了个autoset这个参数给我们,效果和/y是一样的。)
### 使用Transformer模型进行图像分类的方法 #### 方法概述 为了使Transformer能够应用于图像分类任务,一种有效的方式是将图像分割成固定大小的小块(patches),这些小块被线性映射为向量,并加上位置编码以保留空间信息[^2]。 #### 数据预处理 在准备输入数据的过程中,原始图片会被切分成多个不重叠的patch。假设一张尺寸为\(H \times W\)的RGB图像是要处理的对象,则可以按照设定好的宽度和高度参数来划分该图像。例如,对于分辨率为\(224\times 224\)像素的图像,如果选择每边切成16个部分的话,那么最终会得到\((224/16)^2=196\)个小方格作为单独的特征表示单元。之后,每一个这样的补丁都会通过一个简单的全连接层转换成为维度固定的嵌入向量。 ```python import torch from torchvision import transforms def preprocess_image(image_path, patch_size=16): transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), # 假设目标分辨率是224x224 transforms.ToTensor(), ]) image = Image.open(image_path).convert('RGB') tensor = transform(image) patches = [] for i in range(tensor.shape[-2] // patch_size): # 高度方向上的循环 row_patches = [] for j in range(tensor.shape[-1] // patch_size): # 宽度方向上的循环 patch = tensor[:, :, i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size].flatten() row_patches.append(patch) patches.extend(row_patches) return torch.stack(patches) ``` #### 构建Transformer架构 构建Vision Transformer (ViT),通常包括以下几个组成部分: - **Patch Embedding Layer**: 将每个图像块转化为低维向量; - **Positional Encoding Layer**: 添加绝对或相对位置信息给上述获得的向量序列; - **Multiple Layers of Self-Attention and Feed Forward Networks**: 多层自注意机制与前馈神经网络交替堆叠而成的核心模块; 最后,在顶层附加一个全局平均池化层(Global Average Pooling)以及一个多类别Softmax回归器用于预测类标签。 ```python class VisionTransformer(nn.Module): def __init__(self, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, drop_rate=0.): super().__init__() self.patch_embed = PatchEmbed(embed_dim=embed_dim) self.pos_embed = nn.Parameter(torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim)) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) dpr = [drop_rate for _ in range(depth)] self.blocks = nn.Sequential(*[ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=dpr[i], ) for i in range(depth)]) self.norm = nn.LayerNorm(embed_dim) self.head = nn.Linear(embed_dim, num_classes) def forward(self, x): B = x.shape[0] cls_tokens = self.cls_token.expand(B, -1, -1) x = self.patch_embed(x) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embed x = self.blocks(x) x = self.norm(x) return self.head(x[:, 0]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值