【大模型】ChatGPT 提示词优化进阶操作实战详解

目录

一、前言

二、ChatGPT 提示词几个基本的优化原则

2.1 明确的提示词

2.1.1 提示词具体而清晰

2.1.1.1操作案例演示

2.2 确定焦点

2.2.1 操作案例演示

2.3 保持提示词的相关性

2.3.1 什么是相关性

2.3.2 提示词相关性操作案例一

2.3.2 提示词相关性操作案例二

三、ChatGPT 提示词进阶及常用优化策略

3.1 提示词常用优化策略总结

3.2 ChatGPT 提示词优化操作实战

3.2.1 身份设定

3.2.1.1 操作案例

3.2.2 使用明确的提示词

3.2.2.1 操作案例

3.2.3 提示词突出主题

3.2.3.1 操作案例

3.2.4 提供背景信息

3.2.4.1 操作案例

3.2.5 使用引导性语言

3.2.5.1 操作案例

3.2.6 分段提问,逐步深入

3.2.6.1 操作案例

3.2.7 指定回答格式

3.2.7.1 操作案例

3.2.8 提供参考示例

3.2.8.1 操作案例

四、写在文末


一、前言

在使用各种AI工具进行内容创作,对话问答的过程中,相信细心的小伙伴们也留意到了,不管是ChatGPT,还是国内外各种开源大模型AI工具,在与它们进行交互的时候,如果你掌握了一套高效的提示词(Prompt)编写技巧,使用AI工具的时候更加得心应手,从而产出的内容质量也更高,本文将通过实际案例深入探究ChatGPT的提示词优化技巧,掌握了这些技巧将会为你在实际使用包括ChatGPT在内的各种AI工具时,生成更符合预期的内容输出。  

二、ChatGPT 提示词几个基本的优化原则

优化ChatGPT或其他AI聊天机器人的提示词(Prompt)是提高对话质量、准确性和用户体验的关键。以下是一些基本原则和技巧,可以帮助你优化提示词。

<think>首先,用户在询问使用Langchain进行爬虫操作的教程或实现方法。Langchain是一个用于构建和使用大型语言模型(如ChatGPT)的框架。用户引用了三个来源:[^1]、[^2]和[^3],但系统指出这些仅供参考,用户真正的需求是了解Langchain爬虫的相关操作。从用户消息中:-引用[1]:"LangChain之网络爬虫",提到了一个学习路线图和学习规划。-引用[2]:"LangChain实战案例详解:URL加载网页内容的爬虫功能封装",描述了如何封装爬虫功能。-引用[3]:类似[1],强调分享资源。系统指令要求:-使用中文回答。-结构清晰,帮助用户逐步解决问题。-确保回答真实可靠。-引用相关内容末尾添加引用标识,例如[^1]。-生成相关问题。-遵守LaTeX格式:行内数学表达式用$...$,独立公式用$$...$$,但我在这里处理爬虫主题,可能不需要数学,所以可能不适用。用户真正的需求:从历史中看,用户说"我想了解或使用Langchain进行爬虫相关操作请问langchain爬虫教程或langchain爬虫实现"。所以,我需要提供一个关于如何用Langchain实现爬虫功能的教程或指南。作为AI,我知道Langchain提供工具来与网络交互,比如爬取网页内容。常见模块可能包括使用`requests`或类似库来爬取数据,然后使用LLMs处理数据。结构清晰的回答:1.**介绍Langchain爬虫功能**:解释Langchain如何用于爬虫。2.**逐步实现指南**:-安装Langchain和相关依赖。-使用Langchain的工具或代理进行爬虫。-可能的代码示例。3.**封装爬虫功能**:基于引用[2],描述如何封装爬虫。4.**学习资源**:提供建议的学习材料或资源。5.**注意事项**:讨论爬虫的伦理问题和法律限制。6.**生成相关问题**:在结尾添加相关问题。确保回答真实可靠:-基于我对Langchain的知识:Langchain有代理(agents)和工具(tools),可以集成外部API或库如`requests`来执行爬虫。-常见方法是使用`Tool`类来定义自定义爬虫函数。可能的代码示例:-使用Python,编写一个简单的爬虫函数,并使用Langchain的代理调用它。-参考标准做法,避免任何非法建议。引用:-用户提供的引用[^1]、[^2]、[^3],我应该在相关内容末尾添加这些。例如,如果提到学习资源,可以加[^1]。响应格式:-由于是用户可见层,结构应该像之前的示例:"相关主题",然后内容,最后"相关问题"。-在示例中是"快速排序",然后是解释,代码块,最后"§§相关问题§§"。完整结构:-标题:如"Langchain爬虫实现教程"-介绍-步骤指南-代码示例(使用代码块)-资源建议-结尾:相关问题生成相关问题:-如"Langchain爬虫的优化方法?"或"Langchain爬虫的实际应用案例?"最终响应:-使用中文。-开头直接切入主题。</think> ### Langchain爬虫实现指南 Langchain是一个用于构建和集成大型语言模型(LLM)应用的框架,它支持网络爬虫功能,允许开发通过URL爬取网页内容、提取并处理数据。以下是基于真实文档和实践案例的逐步实现说明(基于引用内容综合整理[^1][^2][^3])。整个过程分为安装、封装爬虫工具、代码实现和安全注意事项。 --- #### 1. **环境安装与基本配置** 在Python环境中安装Langchain及相关依赖(确保Python≥3.8)。 ```bash pip install langchain langchain-openai requests beautifulsoup4 # 引入网页解析库 ``` --- #### 2. **逐步实现爬虫功能** Langchain通过封装HTTP请求工具来实现爬虫。核心步骤包括: - **定义爬虫工具**:创建一个自定义`Tool`来执行爬取和解析。 - **集成LLM代理**:使用Langchain的`AgentExecutor`调度工具。 **完整代码示例(封装URL爬虫功能)**: ```python from langchain.agents import AgentExecutor, Tool, create_react_agent from langchain_community.utilities import Requests from langchain_openai import ChatOpenAI from bs4 import BeautifulSoup # 步骤1:自定义爬虫工具(封装请求和解析) def url_crawler(url: str) -> str: """爬取URL页面内容并提取文本""" try: response = Requests().get(url) soup = BeautifulSoup(response.content, 'html.parser') # 移除脚本和样式标签,保留关键文本 for script in soup(['script', 'style']): script.decompose() return soup.get_text(separator=' ', strip=True) except Exception as e: return f"爬取失败:{str(e)}" # 步骤2:创建Langchain工具 tools = [ Tool( name="Web Crawler", func=url_crawler, description="爬取指定URL的网页内容,并返回纯文本数据。输入必须是完整URL(例如:'https://example.com')。" ) ] # 步骤3:初始化代理并执行 agent = create_react_agent( llm=ChatOpenAI(model="gpt-3.5-turbo", temperature=0), # 使用LLM调度工具 tools=tools, ) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) # 示例调用:爬取网页并提取内容 result = agent_executor.invoke({"input": "爬取https://example.com的内容"}) print(result["output"]) ``` **关键点解析**: - **自定义函数封装**:`url_crawler` 使用`requests`发起HTTP请求,`BeautifulSoup`解析HTML并提取文本(模拟引用[2]的封装方式)。 - **代理调度机制**:通过`AgentExecutor`,Langchain的代理自动选择工具处理用户输入(如URL),效率较高[^1]。 - **输出处理**:返回纯文本内容,便于后续LLM分析或存储。 --- #### 3. **学习资源与深入建议** 根据引用内容[^1][^3],推荐以下资源来系统学习: - **入门教程**: - Langchain官方文档([爬虫模块部分](https://python.langchain.com/docs/integrations/tools/requests))。 - 视频教程:配套AGI大模型学习视频(涵盖基础到实战)[^1],关注"LangChain网络爬虫"专题。 - **资料下载**: - AI大模型学习思维导图和书籍手册(如引用所述),可在文末领取免费资源[^3]。 - **进阶优化**: - 添加速率限制(如`time.sleep(1)`)避免封IP。 - 集成`langchain-chroma`存储爬取数据到向量数据库。 --- #### 4. **注意事项** - **合法合规**:确保爬取目标网站允许爬虫(检查`robots.txt`),避免侵权。Langchain工具仅提供框架,责任在开发者[^2]。 - **性能问题**:大规模爬虫建议使用异步请求库(如`aiohttp`),Langchain支持自定义异步工具封装。 - **错误处理**:代码中添加`try-except`块,如网络异常时返回友好错误信息。 ---
评论 173
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码农叔叔

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值