【AI大模型】大模型RAG技术Langchain4j 核心组件深入详解

目录

一、前言

二、Langchain4j概述

2.1 Langchain4j 是什么

2.2 Langchain4j 主要特点

2.3 Langchain4j 核心组件

2.4 Langchain4j 核心优势

三、Langchanin4j组件应用实战

3.1 前置准备

3.1.1 导入如下依赖

3.1.2 获取apikey

3.1.3 获取官方文档

3.2 聊天组件

3.2.1 基本对话

3.2.2 记住上下文对话

3.2.3 流式对话

3.3 文生图

3.4 ChatMemory

3.5 Tools 组件

3.5.1 参考案例代码一

3.5.2 参考案例代码二

3.6 AI Service使用

3.6.1 AiService 介绍

3.6.2 参考案例一

3.6.3 参考案例二

3.5.4 @SystemMessage扩展点

3.6.5 整合整合ChatMemory和Tools

3.7 Embedding组件使用

3.7.1 什么是 Embedding

3.7.1 Embedding案例一

3.7.3 向量数据库

3.7.4 使用向量数据库

3.7.5 使用向量数据库检索

3.8 RAG完整案例

3.8.1 准备一个文档

3.8.2 加载文件到向量数据库

3.8.3 文本检索

3.8.4 结合大模型使用

四、写在文末


一、前言

当下随着各种AI大模型的纷纷登场,AI赋能为业务的拓展和商业价值的延伸带来了无限的可能,于是各大厂商陆续推出对主流AI大模型的接入和支持,方便普通用户或开发者快速体验最新的大模型能力,以DeepSeek为例,像阿里云,硅基流动,腾讯云等多家互联网云厂商,强势接入DeepSeek,让使用者快速尝鲜。与此同时,为了应用开发者能够基于自身的业务快速对接各类AI大模型API能力,更灵活的拓展自身的业务能力。本篇以Langchain4j为例进行说明,详细介绍下Langchain4j的核心技术组件的使用。

二、Langchain4j概述

<think>好的,用户想了解langchain4j的执行流程。我需要先回忆一下langchain4j的基本结构和核心组件。记得langchain4j是一个Java库,用于集成大型语言模型(LLM)到应用中,类似于Python的LangChain。 首先,执行流程可能从创建提示模板开始。用户需要定义输入变量,比如问题或指令,然后通过模板生成具体的提示内容。这部分应该涉及到PromptTemplate类,用户可能需要从langchain_core.prompts导入,如引用[2]提到的,避免使用旧版本的导入方式。 接下来是模型调用。用户需要配置LLM的访问参数,比如API密钥、模型类型等。Langchain4j可能提供了不同的模型适配器,比如OpenAI或Cohere,用户需要选择合适的模型并实例化对应的类。例如,使用OpenAI的模型时,需要设置API key和模型名称。 然后是处理模型输出。生成的响应可能需要后处理,比如解析成特定格式或提取关键信息。这部分可能需要自定义工具或使用内置的工具类,比如OutputParser。此外,链式调用(Chain)可能涉及多个步骤的组合,比如先检索相关信息,再生成回答,最后验证结果。 还需要考虑内存管理,用于在多次调用之间保持上下文。例如,在对话应用中,保存历史消息以便模型理解当前对话的背景。内存组件可能包括ConversationMemory类,用于存储和检索之前的交互信息。 另外,用户提到的引用[3]提到Elasticsearch与LangChain的集成,可能涉及到检索增强生成(RAG)流程。在langchain4j中,可能通过检索文档库获取相关信息,再结合LLM生成回答,这涉及到检索器和生成器的协同工作。 最后,异常处理和性能优化也是执行流程的一部分。例如,引用[1]提到的EMT4J可能用于监控和调优Java应用的性能,确保langchain4j的高效运行。同时,正确的导入和依赖管理,如引用[2]的提示,能避免运行时错误。 总结执行流程的步骤大致是:初始化组件(模型、提示模板、内存等),构建处理链,执行链并处理输入,调用模型,处理输出,维护上下文。需要详细解释每个步骤,并可能结合代码示例说明流程。</think>### LangChain4j 执行流程详解 LangChain4j 是一个用于集成大型语言模型(LLM)到 Java 应用的框架,其核心目标是通过模块化设计简化复杂任务的构建。以下是其典型执行流程的分步说明: --- #### **1. 初始化组件** - **提示模板 (Prompt Template)** 定义输入变量的占位符模板,例如生成问答或指令。 ```java PromptTemplate promptTemplate = new PromptTemplate("请回答以下问题:{{question}}"); ``` 需确保导入正确的类(如引用[2]提示,使用 `langchain_core.prompts.PromptTemplate`)[^2]。 - **模型配置** 选择并配置 LLM 服务(如 OpenAI、Cohere 或本地模型),设置 API 密钥、超时等参数。 ```java OpenAiChatModel model = OpenAiChatModel.builder() .apiKey("YOUR_API_KEY") .modelName("gpt-3.5-turbo") .build(); ``` - **内存管理 (Memory)** 用于存储对话历史或上下文信息,例如 `ConversationMemory`。 ```java ConversationMemory memory = new ConversationMemory(); memory.add("用户: 你好!"); ``` --- #### **2. 构建处理链 (Chain)** LangChain4j 通过链式调用组合多个步骤,例如: - **检索增强生成 (RAG)** 结合检索器(如 Elasticsearch)和生成模型(如引用[3]提到的集成场景)[^3]。 ```java Chain chain = Chain.builder() .retriever(elasticsearchRetriever) // 从文档库检索信息 .promptTemplate(promptTemplate) // 生成提示 .llm(model) // 调用模型 .build(); ``` --- #### **3. 执行流程** - **输入处理** 将用户输入绑定到提示模板,并注入上下文(如内存中的历史对话)。 ```java Map<String, Object> variables = new HashMap<>(); variables.put("question", "如何优化快速排序?"); String prompt = promptTemplate.format(variables); ``` - **模型调用** 发送提示至 LLM 并获取原始响应。 ```java String rawResponse = model.generate(prompt); ``` - **输出后处理** 解析模型响应,可能包括 JSON 解析、关键词提取或格式化。 ```java OutputParser parser = new JsonParser(); String answer = parser.parse(rawResponse); ``` --- #### **4. 上下文维护** - **更新内存** 将当前输入和输出保存至内存,供后续交互使用。 ```java memory.add("AI: " + answer); ``` --- #### **5. 异常与性能优化** - **错误处理** 捕获 API 调用异常(如网络超时),并设计重试逻辑。 - **性能监控** 可借助 EMT4J 等工具(如引用[1])分析链式调用的性能瓶颈[^1]。 --- ### 示例代码:简单问答流程 ```java // 初始化模型和模板 OpenAiChatModel model = OpenAiChatModel.builder().apiKey("sk-xxx").build(); PromptTemplate template = new PromptTemplate("问题:{{query}}"); // 执行链 String query = "快速排序的时间复杂度是多少?"; String prompt = template.format(Map.of("query", query)); String response = model.generate(prompt); System.out.println("答案:" + response); // 输出: O(n log n) 平均情况 ``` ---
评论 103
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码农叔叔

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值