【AI大模型】Spring AI 基于Redis实现对话持久存储详解

目录

一、前言

二、Spring AI 会话记忆介绍

2.1 Spring AI 会话记忆概述

2.2 常用的会话记忆实现方式

2.2.1 集成数据库持久存储会话实现步骤

2.3 适用场景

三、Spring AI基于内存会话记忆存储

3.1 本地开发环境准备

3.2 工程搭建与集成

3.2.1 添加核心依赖

3.3.2 添加配置文件

3.3.3 添加测试接口

3.2 ChatMemory 介绍

3.2.1 ChatMemory 概述

3.2.2 InMemoryChatMemory

3.2.3 MessageWindowChatMemory 

3.2.4 MessageChatMemoryAdvisor

3.3 案例效果演示

3.3.1 自定义配置类

3.3.2 添加测试接口

四、Spring AI基于Redis记忆存储

4.1 前置准备

4.1.1 导入redis依赖

4.1.2 增加配置信息

4.1.4 增加redis配置类

4.1.5 启动redis服务

4.2 代码整合过程

4.2.1 增加会话实体对象

4.2.2 自定义ChatMemory

4.2.3 自定义模型配置类

4.2.4 添加测试接口

4.2.5 效果测试

五、写在文末


一、前言

在使用AI大模型产品进行多轮对话的时候发现,你可以在第一次输入问题并得到大模型的回复之后,只要是在一定的会话时间窗口期内,再次提问与第一次相关的问题,或者基于第一次的提问的衍生内容,大模型均可以再次回复与此相关的回答,这就是大模型的记忆功能。

默认情况下,我们向大模型每次发起的提问都是新的,大模型就无法把我们的每次对话形成记忆,也无法根据对话上下文给出人性化的答案,因为大模型已经失去了上一次的提问记忆。所以让智能体(如AI助手、机器人、虚拟角色等)拥有记忆功能不仅能提升交互体验,还能增强其功能性、适应性和长期价值。本篇以Spring AI为例,详细说明下基于Spring AI框架下的记忆功能的实现。

二、Spring AI 会话记忆介绍

</

评论 52
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码农叔叔

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值