我是一名专注 AI 案例拆解的 AI 创业者,在我的个人公众号‘Fun AI Everyday’,我每天都会详细的拆解一个国内或海外 AI 项目/产品。
这一篇其实是一个系列,还有:深度解读|美国创业孵化器及生态;失败的代价 | 中美创业退出门槛与机制对比;中美独角兽融资逻辑对比 | 愿景与速度的博弈 等内容,可以关注 Fun AI Everyday
我之前介绍了很多中国和美国的 AI 公司,提到人工智能创业公司,大家脑海中常常浮现的是美国的 OpenAI、Anthropic,或中国的百度、智谱AI、MiniMax。
但如果把目光转向大西洋的另一侧,会发现:欧洲正在孕育一批极具特色的 AI 独角兽公司。它们虽然融资规模不及美中,但却在国防、语言、开源和合规等领域,探索着属于自己的 AI 道路。
这篇文章将对欧洲 AI 的代表性公司进行梳理,提炼它们背后的趋势,并与中美做一个对比,看看这股力量为何值得关注。
我之后会在每周六发一些比较长的分析文章,包括 AI + 行业的纵向深度分析、全球 AI 创业地图、AI 投融资分析等,感兴趣的可以留意下。
「 为什么是欧洲? 」
虽然欧洲在 AI 热潮中的存在感相对较弱,但它却具备三方面优势:
1. 人才与学术。欧洲拥有剑桥、牛津、苏黎世联邦理工、巴黎高科、慕尼黑工业大学等顶尖科研中心,为 AI 提供了源源不断的人才与基础研究成果。
2. 政策与伦理。欧盟率先推出《人工智能法案 AI Act 》,强调透明、可解释和合规使用。这样的监管环境虽然让创业门槛更高,但也在推动欧洲 AI 公司在“可信 AI”和“安全可控 AI”上形成差异化。
3. 地缘与产业定位。欧洲没有美国那样的科技巨头生态,也不像中国有庞大的应用场景压力,因此更倾向于 “找到细分突破口”。这也是为什么欧洲 AI 创业版图格外多样化:既有国防安全,也有开源社区,还有语言与翻译工具。
「 欧洲 AI 代表公司图谱 」
我挑选一些最具代表性的 AI 独角兽或明星公司,看看欧洲在全球 AI 版图上的布局。
1. Helsing(德国):AI 国防安全的代表
-
成立时间:2021
-
领域:AI+国防、安全
-
融资情况:2023 年完成超 2 亿欧元融资
-
Helsing 的定位非常特殊:它不做消费产品,而是服务于 国防和情报部门。通过 AI 对海量传感器、卫星和作战系统数据进行实时分析,它能为作战人员提供 战场态势感知和决策辅助。这让 Helsing 被称为“欧洲版 Palantir”。
-
在俄乌战争背景下,Helsing 的战略价值被进一步放大。它代表了欧洲 AI 的一个独特方向:安全、国防、主权自主。
2. Mistral(法国):欧洲开源大模型之星
-
成立时间:2023
-
领域:开源大模型
-
融资情况:成立半年即获超 4 亿美元融资
-
Mistral 的目标是打造 欧洲自己的大语言模型,并坚持 开源。它的产品以轻量化、可部署为特点,受到开发者社区欢迎。相比于 OpenAI 的闭源模式,Mistral 强调开放透明,契合欧洲“AI 公共资产”的理念。
-
Mistral 代表了欧洲 AI 在 基础模型 上的一次“集体突围”,也是法国政府寄予厚望的国家级项目。
3. Aleph Alpha(德国):可解释与合规导向的基础模型
-
成立时间:2019
-
领域:多模态大模型
-
融资情况:2023 年获 5 亿美元融资
-
Aleph Alpha 总部在德国海德堡,是欧洲最早研发大模型的公司之一。不同于美国公司追求模型规模,它强调 可解释性、安全性和合规性,例如允许用户查看模型的推理路径。
-
Aleph Alpha 与德国政府、欧洲多家大型企业都有合作,代表着欧洲在 “自主可控 AI 基础设施” 上的探索。
4. DeepL(德国/科隆):语言之王
-
成立时间:2017
-
领域:机器翻译、语言服务
-
估值:超 10 亿美元
-
DeepL 最初以翻译工具闻名,被公认为唯一能挑战谷歌翻译的产品。其翻译的流畅度和自然性在业内口碑极佳。如今 DeepL 已拓展到写作辅助、企业级语言解决方案,是欧洲 AI 在语言多样性上的自然优势体现。
5. Stability AI(英国):生成式 AI 的开源浪潮
-
成立时间:2020
-
领域:生成式图像 AI
-
产品:Stable Diffusion
-
Stability AI 因开源模型 Stable Diffusion 爆红全球,掀起生成式图像的开源潮流。它的模式是 社区驱动 + API 商业化,影响了无数艺术家、设计师和创业公司。
尽管商业模式仍在探索中,但 Stability AI 证明了欧洲公司可以在全球范围引发技术运动。
6. Synthesia(英国):AI 视频生成
-
成立时间:2017
-
领域:视频生成
-
产品:虚拟数字人演示视频
-
Synthesia 提供 AI 生成视频服务,用户只需输入文本,就能生成带真人形象和语音的视频。它在教育、广告、企业培训领域广泛应用。相比美国 Runway 的“创意视频生成”,Synthesia 更强调 商业落地与效率。
7. 其他典型公司
-
LatticeFlow(瑞士):聚焦 AI 可解释性,帮助企业检测模型漏洞;
-
Graphcore(英国):开发 AI 专用芯片,曾被寄望为“英国的英伟达”,但近年来商业遇挫;
-
Hugging Face(法国起家,现总部纽约):虽然已全球化,但其法国基因让它成为欧洲 AI 社区的象征。
「 欧洲 AI 的趋势与中美对比 」
欧洲 AI 的三大趋势:
-
国防与主权 AI:在地缘政治压力下,欧洲更加重视 AI 在国防安全和国家主权中的作用。Helsing、Aleph Alpha 就是代表。
-
开源与合规驱动:与美国的“商业闭源”不同,欧洲强调开源、透明和合规性,Mistral 与 Stability AI 是典型案例。
-
语言与本地化:欧洲的多语言环境催生了 DeepL、Synthesia 这样的语言/视频公司。这是欧洲 AI 的天然优势。
欧洲 vs 美国 vs 中国:三种 AI 发展模式
1. 在美国,AI 的主导逻辑是“技术突破 + 平台化生态”。
-
美国资本环境雄厚,风险投资更愿意支持那些以大模型为核心、追求规模效应的企业。
-
OpenAI、Anthropic、Google DeepMind 等巨头几乎都选择了打造通用大模型,并以此为平台吸引开发者与生态伙伴,进而衍生出一系列应用。
-
美国的监管相对宽松,这让企业能够大胆试错,在算法、算力和前沿研究上不断推动边界。
2. 在中国,则形成了一条完全不同的路径。大模型同样是重点,但中国的优势更多体现在应用落地和场景驱动。
-
无论是百度的“文心一言”、阿里的“通义千问”,还是智谱AI、MiniMax,都更强调在教育、政务、零售、制造等产业场景的广泛应用。
-
政策在中国扮演着重要角色,政府不仅设定战略方向,还推动产业落地,形成了“大模型 + 应用生态”的独特模式。
-
中国的 AI 发展往往与庞大的市场需求和数字化进程相结合,速度快,规模大。
3. 相比之下,欧洲的 AI 道路显得更为独特。
-
一方面,资本环境更为保守,投资者和创业公司更注重商业模式的可持续性,而不是盲目追逐规模;
-
另一方面,政策上欧盟通过《人工智能法案》确立了严格的监管框架,把“合规、可解释、伦理”放在首位。
-
这种环境使得欧洲 AI 公司很少选择与美国正面竞争通用大模型,而是转向差异化突破口:比如 Helsing 在国防安全领域的探索,Mistral 和 Stability AI 的开源实践,DeepL 在多语言翻译上的优势,Aleph Alpha 对可解释性和合规性的坚持。
换句话说,美国代表了技术驱动和规模化的极致,中国代表了应用驱动和场景化的扩张,而欧洲则更像是寻找“第三条道路”:它通过合规、安全、开源、本地化等差异化优势,在全球 AI 版图中逐渐确立了属于自己的定位。
最后,虽然欧洲 AI 公司数量和融资体量远不如美中,但它们的存在展示了另一种可能性:
-
在国防安全上,Helsing 让欧洲能掌握关键技术自主权;
-
在语言和本地化上,DeepL、Synthesia 为多语种世界提供独特解决方案;
-
在基础模型上,Mistral 和 Aleph Alpha 表现出开源、合规和解释性的独特取向。
未来的 AI 版图不会是单一极的,美国与中国的竞争之外,欧洲正以独特的价值观和技术路径切入全球 AI 竞争。
这不仅是关于技术的竞争,也是关于理念和模式的竞争。
以上,今天周五,祝你加倍开心。