目标检测开源代码汇总 object detection algorithm codes

本文汇总了多种目标检测算法及其实现,包括SlimYOLOv3等轻量化模型,适用于无人机实时应用。涵盖多种场景如卫星图像车辆检测,并提供开源项目链接。

无人机目标检测
SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications
https://arxiv.org/abs/1907.11093
https://github.com/PengyiZhang/SlimYOLOv3

目标检测发展线路图–https://github.com/hoya012/deep_learning_object_detection

卫星图像车辆检测
https://github.com/CosmiQ/simrdwn

车辆检测竞赛
http://detrac-db.rit.albany.edu/DetRet 检测
http://detrac-db.rit.albany.edu/Tracking 跟踪

车辆检测
Evolving Boxes for Fast Vehicle Detection ICME 2017
http://zhengyingbin.cc/EvolvingBoxes/
https://github.com/Willy0919/Evolving_Boxes

车辆检测
Small U-Net for vehicle detection
https://github.com/vxy10/p5_VehicleDetection_Unet

目标检测 Faster RCNN + SSD
Single-Shot Refinement Neural Network for Object Detection
https://github.com/sfzhang15/RefineDet

目标检测
A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection ECCV2016
https://github.com/zhaoweicai/mscnn

目标检测 — 加速候选区域提取
DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling ICCV2017
https://github.com/lachlants/denet

【Dlib 19.5车辆检测】《Vehicle Detection with Dlib 19.5》
http://blog.dlib.net/2017/08/vehicle-detection-with-dlib-195_27.html

目标检测
RON: Reverse Connection with Objectness Prior Networks for Object Detection CVPR2017
https://github.com/taokong/RON

同时检测和分割,类似 Mask R-CNN
BlitzNet: A Real-Time Deep Network for Scene Understanding ICCV2017
https://github.com/dvornikita/blitznet ​​​​

目标检测
DSOD: Learning Deeply Supervised Object Detectors from Scratch ICCV2017
https://github.com/szq0214/DSOD

目标检测:
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
https://github.com/sanghoon/pva-faster-rcnn

目标检测
R-FCN: Object Detection via Region-based Fully Convolutional Networks
https://github.com/daijifeng001/r-fcn

目标检测
A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection CVPR 2017
Caffe code : https://github.com/xiaolonw/adversarial-frcnn

目标检测
Improving Object Detection With One Line of Code
https://github.com/bharatsingh430/soft-nms

行人检测:

Is Faster R-CNN Doing Well for Pedestrian Detection? ECCV2016
https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian

检测
Accurate Single Stage Detector Using Recurrent Rolling Convolution
https://github.com/xiaohaoChen/rrc_detection

翻译:Visible-Infrared Image Alignment for UAVs: Benchmark and New Baseline。With the extensive use of multisensors in uncrewed aerial vehicles (UAVs), multimodality information processing has become the research focus. In academic research pertaining to object detection and tracking tasks in UAVs, researchers often align visible-infrared image pairs as a preprocessing step. However, in actual tasks, the dual-modality image pair acquired by UAVs is unaligned, which significantly limits the application of downstream tasks. At present, there are no publicly available multimodality image alignment datasets for UAVs. In this article, we present a large-scale benchmark for the dual-modality image alignment task in UAVs, including 81000 training image pairs and 15000 testing image pairs. Meanwhile, we propose a transformer-based dual-modality image alignment network as the baseline for this benchmark. First, the algorithm extracts multiscale features for image representation to address unaligned image pairs with varying resolutions. Second, a transformer-based alignment network is proposed to improve the fusion of features from heterogeneous modalities. Finally, deformable attention is adopted to alleviate the problem of memory explosion. Numerous experiments on this dual-modality image alignment benchmark are conducted to demonstrate the effectiveness of our algorithm. Source codes are available at https://github.com/gaozhinanjiu/UAVmatch.
03-09
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值